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Abstract

The electron stretcher ring ELSA provides a beam of

polarized electrons of up to 3.2 GeV energy. To preserve

the initial degree of polarization, several depolarizing reso-

nances have to be compensated during the fast energy ramp

of 6 GeV/s. Beam depolarization, caused by crossing these

resonances is studied using comprehensive numerical cal-

culations. These depend essentially on a precise model of

the actual magnetic field distributions, explicitly taking into

account misalignments. Hence it is necessary to match the

theoretical lattice to the actual accelerator. In a first step the

alignment of all magnets has been examined and improved.

This was done by using standard survey equipment and pre-

cise electronic spirit levels. In a second step the concept of

response matrix fitting is used for further, beam based, lat-

tice matching. Particle tracking and optics calculations are

carried out using elegant, a fully 6D accelerator toolbox.

Lattice matching is done by repeatedly calling elegant and

utilizing a Levenberg-Marquardt optimizer. In this contribu-

tion we will describe our lattice fitting implementation.

INTRODUCTION

ELSA is a 164 m long separated function machine with

FODO-structure (see Fig. 1). It consists of 24 bending

dipole magnets and 32 quadrupole magnets, divided in two

families. For chromaticity correction and for excitation of a

third integer betatron resonance needed for slow beam extrac-

tion, twelve sextupole magnets, divided into three families,

are installed.

At ELSA the so called simlib, an in house developped

simulator, is used as an online model. Up to now this model

does not consider misalignments and field errors of individ-

ual magnets. This leads to substantial differences between

the model and the real accelerator. For example up to now

empirical calibration factors between quadrupole strength

and desired tunes have to be used. Also simlib cannot pro-

vide field maps of individual magnets and is not able to take

edge effects into account. Therefore it cannot be used as

input for numerical simulations of beam depolarization [1].

As a successor of simlib currently the computer code

elegant [2] is introduced at ELSA. In order to bring the

model in good agreement with the real accelerator a beam

based approach is implemented. Therefore the model is

optimized to match the simulated orbit response matrix to the

measured matrix. This is done in a similar way as described

in [3], the so called LOCO (Linear Optics from Closed

Orbits) method.
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Figure 1: Sketch of the electron stretcher facility ELSA.

ORBIT RESPONSE MATRIX
The orbit response matrix (ORM) describes the response

of the closed orbit �u to the change of applied corrector mag-

net kicks �α:

�u = O �α OM×N =
(
�O1, . . . , �ON

)

Element Oik of the orbit response matrix represents the

orbit shift at the i–th beam position monitor due to a kick

from the k–th corrector magnet:

Oik = ∂ui
∂αk

(1)

In linear approximation the matrix O does not depend on

the kick strength Δα.

At ELSA a beam position monitor (BPM) is installed at

every quadrupole magnet, leading to 32 measurable beam

positions in each plane. For closed orbit correction in the

horizontal plane extra trim windings of the 24 main dipole

magnets are used, in the vertical plane 29 dedicated corrector

magnets are available. This leads to (32+ 32) ∗ (24+ 29) =
3392 entries of the ORM.

For a detailed description of the closed orbit correction

setup see [4].

ORM Measurement
In order to measure column k of the orbit response matrix

the kick of the k-th corrector is changed by a small amount

Δα and the resulting closed orbit �u(Δα) is measured. The

kick is changed to −Δα and the resulting closed orbit is

measured again. The difference between the two measured

closed orbits:

Δ�u = �u(Δα) − �u(−Δα)

divided by the kick difference leads to the orbit response:

�Ok ≈ �u(Δα) − �u(−Δα)
2Δα

(2)
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Figure 2: Shown are the measured closed orbit differences Δz = z(Δα) − z(−Δα) for three different corrector kicks of

vertical corrector magnet VC01.

To assure that the linear approximation still holds the mea-

surement is repeated for different values of Δα (see Fig. 2).

For every entry of �Ok the measured orbit differences Δui are

than fitted against Δα and the corresponding response entry

is deduced.

ORM Simulation
In principle the model ORM can be calculated by using

the simulated beta and phase functions, β and ψ, at all beam

positions monitors and corrector magnets [5, sec. 4.7.3]:

Oik =
√
βi βk

2 sin πQ
cos (|ψi − ψk | − πQ) (3)

Here Q is the corresponding betatron tune. At ELSA the

horizontal correction is implemented by changing the dipole

field via extra trim windings of the main bending magnets.1

Because the dipole magnets are almost 3 m long the beta and

phase functions cannot be approximated as constant along

the longitudinal direction of the magnet and therefore Eq.

(3) cannot be used.

Fortunately elegant can be configured to use tracking

techniques to find the orbit response. The columns of the

ORM are calculated similar to the measurement procedure:

After modifying the kick of the k-th corrector magnet by a

small amount Δα a new closed orbit is calculated by tracking

a test particle. Afterwards the corrector kick is changed to

−Δα and a new closed orbit is tracked. Column k of the

simulated ORM can then be calculated with Eq. (2).

MATCHING TECHNIQUE
In order to match simulated and measured ORMs a set of

lattice parameters �P is adjusted to minimize the difference

between the two matrices. The vector �P represents a set of

parameters, such as gradient errors and displacements of

1 the tracking code of elegant was slightly modified in order to use the

bending dipoles as corrector magnets. The bending field is adjusted

according to the assigned corrector kick.

χ2(�P ) =
∑

i,j

(
Osim

ij (�P )−Omeas
ij

)2

σ2
i,j

= �V T �V

elegant

�P0 Omeas

optimizer

�Popt

elegant

Osim

�V , �P

�P

Osim

Figure 3: Schematic overview of the implemented fitting

scheme.

quadrupole magnets, fractional field errors of dipole mag-

nets, gains of BPMs and calibration factors for corrector

magnets.

As the objective for an optimizer the following least-

square problem can be formulated:

χ2( �P) =
∑

i,k

(
Osim
ik

( �P) − Omeas
ik

)2

σ2
i, j

= �VT �V (4)

The minimization is implemented in a c++ program de-

scribed in Fig. 3. Starting from an initial set of parameters
�P = �P0, a modified lattice is build and Osim is calculated by

elegant. In a next step χ2( �P) is computed using Eq. (4)

and Omeas as well as its measurement errors σ. Simultane-

ously the vector �V is constructed according to Eq. (4).
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To find the solution for this nonlinear least-square problem

a Levenberg-Marquardt optimizer [6, sec. 15.5], using the

implementation from alglib [7], is applied. This algorithm

incrementally decreases
�
�
�

�V �
�
�
. Therefore the Jacobian matrix

Ji j =
∂Vi

∂Pj
(5)

has to be evaluated repeatedly to drive �P towards the mini-

mum of χ2. After each step of the algorithm a new set of

parameters �P is generated. These are then fed to elegant in

order to calculate a new Osim. If the optimization converged

to a minimum a set of optimal parameters �Popt is found.

The most time consuming task is the calculation of Osim.

Almost 100 % of the overall computation time, usually one

to two seconds on a desktop PC, is spent in calling elegant,

computing the ORM.

Calculation of Jacobian Matrix
Because the vector �V in Eq. (5) cannot be calculated

analyticaly, the Jacobian matrix has to be found by numerical

differentiation. Because several orbit response calculations

via elegant have to be performed it is crucial to optimize

this step. Fortunately this can be done in parallel, because

the columns of the matrix are independent of each other. For

a small value ε the j-th column of J can be approximated as

�Jj
�
�
�
� �P0

=
∂�V ( �P0)
∂Pj

≈ �V ( �P0 + �ε ) − �V ( �P0 − �ε )
2ε

(6)

with �ε = �ei ε . An ideal value for ε is not easy to find. It

heavily depends on the scale of Pi and the accuracy of the

simulated ORMs. The solution for this problem is to use an

adaptive algorithm similar to the implementation in [6, sec.

5.7]. It calculates the derivative by iteratively reducing ε in

Eq. (6). If the estimated error does not further improve the

algorithm terminates. Usually the algorithm converges after

a few iterations and does not depend on the initial ε .

SCALE
The Levenberg-Marquardt algorithm is usually quite ro-

bust concerning the scale of the optimized parameters. How-

ever if the parameter scale differs in several orders of magni-

tude it is necessary to pre-scale the problem, hence prelim-

inary simulations are required. This can be done indepen-

dently for each parameter type.

A random vector �Ptest of normal distributed values is gen-

erated and multiplied with c. Then χ2(c �Ptest) is simulated

via elegant (see Eq. (4)) for several orders of magnitude

of c, and a polynomial fit of second order is performed.

In order to deduce the proper scaling for every parameter

type the found polynomial is solved for an arbitrary chosen
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Figure 4: Simulated scale of quadrupole field components
�P M

K1
, dipole field errors �P M

FSE
and horizontal displacements

�P M
DX

of all 24 dipole magnets.

value of χ2(c �P) = 200 (see Fig. 4). The found c then can

be used as the scaling factor.

Proper scaling is also necessary to prevent the χ2 cal-

culation from escalating into to high values. If only a few

parameters are badly scaled, tracking and hence the genera-

tion of ORMs can fail completely.
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