Neutrinoless Double Beta Decay and COBRA

Christian Oldorf

Universität Hamburg Institut für Experimentalphysik

20 May 2010

 $0\nu\beta\beta$ and COBRA

Table of Contents

- 1 Neutrino Physics and the Neutrinoless Double Beta Decay
- 2 Experimental Considerations
- 3 Experiments in Past, Presence and Future
- 4 The COBRA Experiment

Neutrino Physics and the Neutrinoless Double Beta Decay

- What we know about Neutrinos
- What we don't know about Neutrinos
- Dirac and Majorana Particles
- The Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

What we know about Neutrinos I

- From Z ^0 decay: $\mathit{N}_{\nu}=2.980\pm0.025$
- Flavour eigenstates \neq mass eigenstates, they mix:

$$\ket{ { { { { } { { } } } } } } = \sum\limits_{i = 1}^3 { U_{lpha i}^st \left| { { { { } { } } } }
ight| } }
ight
angle$$

U is called PMNS-Matrix (Pontecorvo, Maki, Nakagawa, Sakata). Parameters (values from Schwetz et al., New. J. Phys. 10 (2008) 113011.):

- $\sin^2(\theta_{12}) = 0.304^{+0.022}_{-0.016}$
- $\sin^2(\theta_{23}) = 0.50^{+0.07}_{-0.06}$
- $\sin^2(\theta_{13}) = 0.01^{+0.016}_{-0.011}$
- 1 CP-violating phase
- 2 additional phases if neutrinos are Majorana particles

What we know about Neutrinos II

From oscillation experiments (Schwetz et al., New. J. Phys. 10 (2008) 113011.):

•
$$\Delta m_{21}^2 = \Delta m_{sol}^2 = 7.65^{+0.23}_{-0.20} \cdot 10^{-5} \text{ eV}^2$$

•
$$|\Delta m_{31}^2| = |\Delta m_{atm}^2| = 2.40^{+0.12}_{-0.11} \cdot 10^{-3} \text{ eV}^2$$

What we don't know

Open questions:

- What is the nature of neutrinos (Dirac vs. Majorana)?
- Is the charge/parity (CP) symmetry broken?
- What are the precise values of neutrino masses and mixing?
- Are there sterile neutrinos? Is the standard picture right?

A wide experimental program is going to address these questions in the future.

What we don't know

Open questions:

- What is the nature of neutrinos (Dirac vs. Majorana)?
- Is the charge/parity (CP) symmetry broken?
- What are the precise values of neutrino masses and mixing?
- Are there sterile neutrinos? Is the standard picture right?

A wide experimental program is going to address these questions in the future.

 $0\nu\beta\beta$ experiments

- are the only known way to distinguish between Dirac and Majorana neutrinos
- can determine the absolute neutrino mass

Dirac Particles

In quantum field theory:

Spin-1/2 particles are described by four–component spinors which obey the Dirac equation.

The four independent components correspond to:

- Particles with Helicity ± 1
- Antiparticles with Helicity ± 1

All charged leptons (e, μ , τ) have to be Dirac particles.

Majorana Particles

```
Experimental fact: Only left-handed neutrinos (H = -1) and right-handed antineutrinos (H = +1) are observed.
```

If neutrinos are Dirac particles:

• Two states are not realised in nature or are sterile

A two-component description should be sufficient (Weyl spinors).

If neutrinos are Majorana particles:

- Particles = Antiparticles ($\nu_L = \overline{\nu}_L$, $\nu_R = \overline{\nu}_R$)
- Neutrinos don't carry a lepton number

Double Beta Decay

Goeppert-Mayer (1935):

- $(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}_e$
- Simultaneous decay of two neutrons

Requirements:

- Nucleus with even A: Separation of m(Z, A) in 2 parabolas
- m(Z, A) > m(Z + 2, A)
- m(Z, A) < m(Z + 1, A) (single β decay forbidden)

Universität Hamburg

 $0\nu\beta\beta$ and COBRA

Double Beta Decay

36 $2\beta^-$ isotopes are known today.

Furthermore possible:

•
$$\beta^+\beta^+$$
: $(Z,A) \rightarrow (Z-2,A) + 2e^+ + 2\nu_e$ (6 isotopes)

•
$$\beta^+$$
 + EC: (Z, A) + $e^ \rightarrow$ $(Z - 2, A)$ + e^+ + $2\nu_e$

• EC/EC: $(Z, A) + 2e^- \rightarrow (Z - 2, A) + 2\nu_e$

Definition Q value:

• Decay energy available for the leptons

•
$$Q = E_{e1} + E_{e2} + E_{v1} + E_{v2}$$

$0\nu\beta\beta$ Decay

Furry (1939):

• $(Z,A) \rightarrow (Z+2,A) + 2e^{-}$

Racah sequence:

•
$$(Z, A) \rightarrow (Z+1, A) + e^- + \overline{\nu}_{e,R}$$

 $(Z+1, A) + \nu_{e,L} \rightarrow (Z+2, A) + e^-$

Helicity flip is required: Suppression of $0\nu\beta\beta$ by $\sim~10^{-5}$

Universität Hamburg

UН

 $0\nu\beta\beta$ and COBRA

$0\nu\beta\beta$ Decay

Experimental confirmation: Peak at the Q value of the decay $Q = E_{e1} + E_{e2}$

Determination of neutrino mass from $0\nu\beta\beta$:

Experimental Considerations

- General Concepts and Detection Limit
- Background Reduction
- The Favourite Isotopes

General Detector Concepts

<u>Source = detector:</u>

- Constraints on material selection
- + Big masses achievable
- + High energy resolution
- + For some isotopes reconstruction of event topology possible (LXe)

Source \neq detector:

- + Precise reconstruction of event topology
- + Analysis of different isotopes
- Big masses problematic

Detection Limit

Without background:

$$T_{1/2}^{limit} \propto a \cdot \epsilon \cdot M \cdot t$$

a...abundance ϵ ...detection efficiencyM...masst...measuring time

Detection Limit

Without background:

$$T_{1/2}^{limit} \propto a \cdot \epsilon \cdot M \cdot t$$

With background:

$$T_{1/2}^{\textit{limit}} \propto \pmb{a} \cdot \epsilon \cdot \sqrt{rac{M \cdot t}{\Delta E \cdot B}}$$

а	 abundance
ϵ	 detection efficiency
М	 mass
t	 measuring time
ΔE	 energy resolution
В	 background event rate

Background

Benchmark for all future experiments: Background $< 10^{-3}$ counts /kg/keV/yr

For an experiment with $M\!=\!1\,{
m ton}$: $1\,{
m count/yr}$ at ${
m Q}\pm 0.5\,{
m keV}$

Background

Benchmark for all future experiments: Background $< 10^{-3}$ counts /kg/keV/yr

For an experiment with M = 1 ton: 1 count/yr at $Q \pm 0.5 \text{ keV}$

Main contributions to background:

Cosmic rays/muons

- Cosmogenic radioisotopes
- Neutrons

Radioisotopes 238 U, 232 Th, 40 K $_{2\nu\beta\beta}$

- \rightarrow underground laboratory
- $\rightarrow \quad \text{underground laboratory}$
- \rightarrow shielding
- $\rightarrow \quad \text{shielding} + \text{clean environment}$
- \rightarrow high energy resolution

Underground Laboratories

Rock–shielding decreases μ –flux and hence cosmogenic radioisotopes

Laboratori Nazionali del Gran Sasso:

- World largest underground laboratories for particle physics
- e.g. OPERA, BOREXINO, DAMA, CRESST
- 0νββ: Heidelberg–Moscow, GERDA, COBRA, CUORE

Radioisotopes

Highest γ -peak from ²³²Th: 2614 keV

Significant decrease of $\gamma\text{-}\mathsf{background}$ with $Q>2614\,\text{keV}$

Energy Resolution

Good energy resolution helps to separate $0\nu\beta\beta-\text{peak}$ from $2\nu\beta\beta-\text{background}$

Half–life

For a given $\langle m_{\nu_e} \rangle$ the expected half–life can be calculated:

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(Q,Z) \cdot \left|M_{GT}^{0\nu} - M_F^{0\nu}\right|^2 \cdot \frac{\langle m_{\nu_e}\rangle^2}{m_e^2}$$

- Phase space factor $G^{0v}(Q, Z)$
 - precise calculation possible
- Nuclear matrix element $\left|M_{GT}^{0\nu}-M_{F}^{0\nu}
 ight|$
 - calculations are not precise and model-dependent
 - $\bullet \ \rightarrow$ different isotopes have to be investigated

Combination of Matrix Elements and Phase Space

Expected $0\nu\beta\beta$ rates per mass vary with a factor \approx 4.

 $0\nu\beta\beta$ and COBRA

Favoured Isotopes

Requirements for an experiment:

- High detection limit of the detector
- Low calculated half-life of the isotope

36 $2\beta^-$ isotopes are known today, but only 9 are considered for $0\nu\beta\beta$ experiments:

		n	at. abundance	Q [keV]
⁴⁸ Ca	\rightarrow	⁴⁸ Ti	0.19 %	4271
¹⁵⁰ Nd	\rightarrow	¹⁵⁰ Sm	5.6%	3367
¹⁰⁰ Mo	\rightarrow	¹⁰⁰ Ru	9.6 %	3034
⁸² Se	\rightarrow	⁸² Kr	9.2 %	2995
^{116}Cd	\rightarrow	¹¹⁶ Sn	7.5 %	2809
¹³⁰ Te	\rightarrow	¹³⁰ Xe	33.8 %	2529
¹³⁶ Xe	\rightarrow	¹³⁶ Ba	8.9%	2479
¹²⁴ Sn	\rightarrow	¹²⁴ Te	5.6%	2288
⁷⁶ Ge	\rightarrow	⁷⁶ Se	7.8%	2039
mburg		OxBB and (OBRA	20

Neutrino Physics and $0\nu\beta\beta$ Experimental Considerations Experimental Status COBRA

Experiments in Past, Presence and Future

- The Heidelberg–Moscow Experiment
- Overview on Upcoming Experiments
- The GERDA Experiment

Heidelberg-Moscow Overview

- Five p-doped HPGe semiconductor detectors
- 10.96 kg active mass
- ⁷⁶Ge enriched to 86%
- 1986: Proposal for this experiment by Prof. Klapdor-Kleingrothaus (Uni Heidelberg)
- 1990: Installation of first detector at LNGS (Central Italy)
- 1995: Completion of the experimental setup
- 2001: Exit of Kurchatov Institute
- 2003: End of data taking

Setup Heidelberg-Moscow

Claim of 4.2 σ evidence for a peak at 2038.07 keV $\rightarrow T_{1/2}^{0\nu} = 1.2 \cdot 10^{25} \text{ yr} \rightarrow \langle m_{\nu_e} \rangle = 0.44 \text{ eV}$

H.V. Klapdor-Kleingrothaus et al, Mod.Phys.Lett.A21:1547-1566,2006

- New results with neural network and pulse shape analysis
- Claim of 6.4 σ evidence for a peak at \sim 2039 keV •
- Results are controversially discussed
- This claim has to be confirmed with other ⁷⁶Ge experiments Universität Hamburg $0\nu\beta\beta$ and COBRA 20.05.10

Future Experiments

Name	Nucleus	Mass*	Method	Location	Time line
	Operational & recently completed experiments				
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010
	Construction funding				
CUORE	Te-130	200 kg	bolometric	LNGS	2012
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011
Substantial R&D funding / prototyping					
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009
Majorana	Ge-76	26 kg	ionization	SUSL	2012
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)
R&D and/or conceptual design					
CARVEL	Ca-48	tbd	scintillation	Solotvina	
COBRA	Cd-116, Te-130	tbd	ionization	LNGS	
DCBA	Nd-150	tbd	drift chamber	Kamioka	
EXO gas	Xe-136	tbd	gas TPC	SNOlab	
MOON	Mo-100	tbd	tracking	Oto	
ersität Hamburg	ität Hamburg $0\gamma\beta\beta$ and COBRA 20.05.10				

0 28

GERDA

GERDA

- + $2\,m$ / $64\,m^3$ liquid Ar as inner shielding and for cooling
- + 3 m / 650 m 3 high–purity water: Shielding against neutrons and $\mu\text{-veto}$ (Water–Cherenkov–Detector)
- Clean room for preparation of detectors without contamination Universität Hamburg $0\gamma\beta\beta$ and COBRA 20.05.10 30

Phases

<u>Phase I</u>

- 15 kg ^{Nat}Ge detectors background evaluation
- + 18 kg $^{76}\mbox{Ge}$ detectors from Heidelberg–Moscow and IGEX
- Proof of Hd–M (2004) results within 1 year of data taking
- Expected: 6 events with 0.5 background events ightarrow 5 σ

Phases

<u>Phase I</u>

- $15 \text{ kg} \text{ }^{Nat}\text{Ge}$ detectors background evaluation
- + 18 kg $^{76}\mbox{Ge}$ detectors from Heidelberg–Moscow and IGEX
- Proof of Hd–M (2004) results within 1 year of data taking
- Expected: 6 events with 0.5 background events ightarrow 5 σ

Phase II (simultaneous to Phase I)

- Development of new detectors
- Background reduction by 3 orders of magnitude
- Within 3 years of data taking:
 - Limit on $T_{1/2}^{0\nu}$: $2 \cdot 10^{26}$ yr
 - $0.09\,\mathrm{eV} < \langle m_{v_e}
 angle < 0.29\,\mathrm{eV}$

Phases

<u>Phase I</u>

- $15 \text{ kg} \text{ }^{Nat}\text{Ge}$ detectors background evaluation
- + 18 kg $^{76}\mbox{Ge}$ detectors from Heidelberg–Moscow and IGEX
- Proof of Hd–M (2004) results within 1 year of data taking
- Expected: 6 events with 0.5 background events ightarrow 5 σ

Phase II (simultaneous to Phase I)

- Development of new detectors
- Background reduction by 3 orders of magnitude
- Within 3 years of data taking:
 - Limit on $T_{1/2}^{0\nu}: 2 \cdot 10^{26} \, \mathrm{yr}$
 - 0.09 eV $<\langle m_{{
 m v}_e}
 angle < 0.29$ eV

Phase III

- + \sim 1 ton ^{76}Ge (together with MAJORANA)
- $\langle \textit{m}_{\nu_e}
 angle \sim 10 \, {
 m meV}$

Universität Hamburg

The COBRA Experiment

- The COBRA Collaboration
- Detector Concepts under Investigation
- CdZnTe Semiconductors in Liquid Scintillator

The COBRA Collaboration

- TU Dortmund
- TU Dresden
- Freiburger Materialforschungszentrum
- Universität Hamburg
- Universität Erlangen
- Tschechische TU Prag
- Laboratori Nazionali del Gran Sasso

Washington University at St. Louis

Universität Bratislava

Universität Jyvaskyla

Universität La Plata

JINR Dubna

Kooperationen: Jagiellonen-Universität (Polen), Los Alamos Nat. Lab. (USA), University of Michigan (USA)

Isotopes

 $Cadmium-Zinc-Telluride \ O-neutrino \ double-Beta \ Research \ Apparatus$

CdZnTe semiconductor detectors contain 9 $\beta\beta$ -isotopes:

lsotope	decay mode	Q (keV)	nat. abundance
⁷⁰ Zn	2β-	1001	0.62 %
^{114}Cd	2β-	534	28.7 %
116 Cd	$2\beta^{-}$	2809	7.5 %
¹²⁸ Te	$2\beta^{-}$	868	31.7 %
¹³⁰ Te	$2\beta^{-}$	2529	33.8%
106 Cd	$2\beta^+$	2771	1.21%
⁶⁴ Zn	β^+/EC	1096	48.6 %
¹²⁰ Te	β^+/EC	1722	0.1 %
^{108}Cd	EC/EC	231	0.9%

Advantages of CdZnTe

- Source = detector (large mass)
- Semiconductor (good energy resolution, clean)
- Room temperature, no cryostat needed
- Modular design (coincidences)
- Tracking ("Solid state TPC")
- Industrial development of CdZnTe detectors
- Two isotopes at once
- ¹¹⁶Cd above 2614 keV

COBRA Concept

Aim:

- Large–scale experiment with M = 420 kg
- Main isotope: ^{116}Cd enriched to $\sim 90\,\%$
- Technical Design Report by end of 2012

Two detector concepts under investigation:

Coplanar grid detectors

Energy measurement and tracking

 $0\nu\beta\beta$ and COBRA

Coplanar Grid Detectors (CPG)

- Readout of two anodes to compensate signals from the holes (Trapping)
- CPGs are currently used in our test setup at LNGS
- Quite large volumes available (from 1 cm³ to 2 cm³)
- Only few readout channels per mass
- + Energy resolution around $2\,\%$ FWHM at $2800\,\textrm{keV}$

Pixel Detectors

• Particle identification: Background reduction by $\approx 10^{-3}$ Real data with Si–Timepix (256x256 pixels):

 $0\nu\beta\beta$ and COBRA

Test Setup at LNGS

Upgrade summer 2010:

- 64 CPGs (4 \times 4 \times 4)
- Installation of Flash–ADCs
- New HV and LV

Contribution of Uni Hamburg

- Shielding of large scale experiment
 - Monte Carlo studies
 - Design of alternative shielding concepts
 - Construction of prototypes and material selection
- Analysis of data from LNGS test setup
- Operation of CdZnTe in liquid scintillator

CdZnTe in LSc: Motivation

CPGs need passivation:

- to prevent CdZnTe from oxidation
- to avoid mechanical damage to the detector and the anodes

Passivations used so far:

- Red lacquer (El Detection & Imaging Systems)
- Transparent lacquer (El Detection & Imaging Systems)
- Cyclotene (Dow Chemicals)

CdZnTe in LSc: Motivation

Passivations used so far:

- Red lacquer (El Detection & Imaging Systems)
- Transparent lacquer (El Detection & Imaging Systems)
- Cyclotene (Dow Chemicals)

Passivation with Liquid Scintillator

Advantages of LSc:

- High impedance \rightarrow good isolator
- Offers possibility to control temperature stability
- Serves as active veto
- High purity with regard to radioactive nuclides \rightarrow e.g. BOREXINO or KamLAND

Experimental Setup

$1\,\text{cm}^3$ CdZnTe, not passivated:

¹³⁷Cs in Nitrogen

Energy resolution: 5.0% FWHM @ 662 keV

¹³⁷Cs in Liquid Scintillator

Energy resolution: 5.1% FWHM @ 662 keV

First Results and Outlook

- CdZnTe detectors are operational in LSc with constant energy resolution
- Check for long term stability
- Investigation of different LSc mixtures
- Use LSc as active veto
- Upgrade of test setup to 8 detectors
- Operation of test setup in underground lab (Dresden or LNGS)

Summary

- $0\nu\beta\beta$ experiments are the only known way to distinguish between Dirac and Majorana neutrinos
- Claim of $0\nu\beta\beta$ discovery has to be confirmed
- Huge efforts are made for many different experiments
- COBRA can be the major and unique step beyond existing double beta experiments
- Operation of CdZnTe in liquid scintillator is an important contribution to the COBRA R&D programme

Summary

- $0\nu\beta\beta$ experiments are the only known way to distinguish between Dirac and Majorana neutrinos
- Claim of $0\nu\beta\beta$ discovery has to be confirmed
- Huge efforts are made for many different experiments
- COBRA can be the major and unique step beyond existing double beta experiments
- Operation of CdZnTe in liquid scintillator is an important contribution to the COBRA R&D programme

Thank you for your attention!

The β -decay and KATRIN

- β^- decay of the neutron
 - $n \rightarrow p + e^- + \overline{\nu}_e$
 - $(Z,A) \rightarrow (Z+1,A) + e^- + \overline{\nu}_e$
 - e.g. KATRIN:

tritium ß-decay and the neutrino rest mass

Effective Neutrino Mass

Neutrino Physics and $0\nu\,\beta\,\beta\,$ Experimental Considerations Experimental Status COBRA

Effective Neutrino Mass and GERDA

Dirac vs. Majorana

Dirac vs. Majorana

Other possible Mechanism

Further processes with $\Delta L = 2$ that could contribute to $0\nu\beta\beta$:

Schechter and Valle, 1982: Observation of $0\nu\beta\beta$ decay \equiv neutrinos are Majorana particles!

Matrix Elements

Exact values of $|M_{GT}^{0\nu} - M_F^{0\nu}|^2$ still not known.

 $0\nu\beta\beta$ and COBRA

Natural Abundance

Enrichment of isotopes is very expensive

⁴⁸ Ca	\rightarrow	⁴⁸ Ti	0.2%
⁷⁶ Ge	\rightarrow	⁷⁶ Se	7.8%
⁸² Se	\rightarrow	⁸² Kr	9.2%
¹⁰⁰ Mo	\rightarrow	¹⁰⁰ Ru	9.6%
^{116}Cd	\rightarrow	116 Sn	7.5%
^{124}Sn	\rightarrow	¹²⁴ Te	5.6%
¹³⁰ Te	\rightarrow	¹³⁰ Xe	34.5%
¹³⁶ Xe	\rightarrow	¹³⁶ Ba	8.9%
¹⁵⁰ Nd	\rightarrow	¹⁵⁰ Sm	5.6%

