$\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Das OPERA-Experiment

Suche nach Neutrino-Oszillationen - Gruppenbericht -

Annika Hollnagel

(annika.hollnagel@desy.de) für die OPERA-Arbeitsgruppe Hamburg

Universität Hamburg Institut für Experimentalphysik

DPG Frühjahrstagung 2012, Göttingen

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung

Experiment $\nu_{\mu} \rightarrow$

 $\mu \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Ausblick

Das OPERA-Experiment

2 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

3 Performance & Statistik

 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationer

Performance & Statistik

Das OPERA-Experiment

OPERA: Oscillation Project with Emulsion Tracking Apperatus.

$${\cal P}(
u_{\mu}
ightarrow
u_{ au}) \sim \sin^2 2 heta_{23} \sin^2 \left(\Delta m_{23}^2 rac{L}{4E}
ight)$$

Appearance-Messung:

- Erster direkter Nachweis von $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen.
- \triangleright Nachweis von Entstehung & Zerfall von τ -Leptonen.

Realisierung:

- Hochenergetischer long-baseline ν_{μ} -Strahl.
- Große Target-Masse:
- > Instrumentierung mit elektronischen Detektorelementen (ED).
- μm-Präzision:
- **Emulsion Cloud Chamber-Photoemulsionen (ECC).**

- τ -Erzeugung in ν_{τ} CC-Wechselwirkungen.
- Zerfall des τ^- -Leptons nach \sim 600 μm .
- ▷ Charakteristische 'Knick'-Topologie.

Hintergrundprozesse:

- ν_μ CC-Wechselwirkungen mit charm-Produktion und nicht detektiertem primärem μ.
- Hadronische Wechselwirkungen in Blei.
- μ -Streuung unter großem Winkel.

Performance & Statistik

Ausblick

Der CNGS-Strahl

CNGS: CERN Neutrinos to Gran Sasso.

- Durchschnittliche *p*-Energie: 400 GeV.
- Durchschnittliche ν -Energie: 17.9 GeV.
- ν_{τ} -Strahlkontamination: $\nu_{\tau}/\nu_{\mu} < 10^{-4}$ %.
- ν_e -Strahlkontamination: $\nu_e/\nu_\mu = 0.06$ %.
- Erwartete Gesamtintensität^{*}: 22.5×10^{19} p.o.t.

*) Nomineller Strahlbetrieb, 5 Jahre Laufzeit.

UHH

Performance & Statistik

Ausblick

LNGS: Laboratori Nazionali del Gran Sasso.

LNGS

- Ort: Unter dem Corno Grande des Gran Sasso in Italien.
- ν -Flugstrecke: \sim 730 km Entfernung zur ν_{μ} -Quelle am CERN.
- Vertikale Felsabdeckung: 1 300 m (3 400 m w.e.).
- Anzahl kosmischer μ : $\sim 1 \, \mathrm{m}^{-2} \mathrm{h}^{-1}$.

Das OPERA-Experiment $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

LNGS: Laboratori Nazionali del Gran Sasso.

LNGS

- Ort: Unter dem Corno Grande des Gran Sasso in Italien.
- ν -Flugstrecke: ~ 730 km Entfernung zur ν_{μ} -Quelle am CERN.
- Vertikale Felsabdeckung: 1 300 m (3 400 m w.e.).
- Anzahl kosmischer μ : ~ 1 m⁻²h⁻¹.

 $\mu \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Der hybride OPERA-Detektor

2 identische Super-Module (SM), bestehend aus:

- Target-Bereich (ECC + ED).
- Magnet-Spektrometer (ED).

+ μ -VETO-System strahlaufwärts des Detektors.

UН

Performance & Statistik

Ausblic

Target-Bereich

Emulsion Cloud Chamber-bricks (ECC):

- Pro brick: 57 × 2 Photoemulsionen auf Kunststoffbasen (~ 0.3 mm), 56 Bleiplatten (1 mm), insgesamt ~ 10 X₀.
- 2 zusätzliche Photoemulsions-Changeable Sheets (CS) pro brick.
- Gesamt: $\sim 150\,000$ bricks zu je $8.3\,{\rm kg}$ ($\sim 1.28\,{\rm kt}$ Gesamtmasse).

Target-Bereich

Performance & Statistik

Ausblick

Target-Bereich:

- Emulsion Cloud Chamber-bricks (ECC).
- Photoemulsions-Changeable Sheets (CS).
- Target Tracker-Szintillatorstreifen (TT).

UН

Performance & Statistik

Ausblick

Magnet-Spektrometer

Magnet-Spektrometer (2x):

- Pro SM: Strahlabwärts des Target-Bereiches.
- Dipolmagnete.
- Resistive Plate Chamber-Detektoren (RPC & XPC).
- Precision Tracker-Driftröhren (PT).

Performance & Statistik

Ausblick

Magnet-Spektrometer

Magnet-Spektrometer (2x):

- Pro SM: Strahlabwärts des Target-Bereiches.
- Dipolmagnete.
- Resistive Plate Chamber-Detektoren (RPC & XPC).
- Precision Tracker-Driftröhren (PT).

 $u_{\mu}
ightarrow
u_{ au}$ -Oszillationer

Performance & Statistik

Ausblick

OPERA

Ereignisrekonstruktion

ED-Ereignisrekonstruktion:

- Lokalisation des *v*-Wechselwirkungsvertex.
- µ-Identifikation.
- ▷ Triggerfunktion für die ECC-Ereignisrekonstruktion.

Ш

Performance & Statistik

Ausblick

OPERA

Ereignisrekonstruktion

ECC-Ereignisrekonstruktion:

- Vertex-Rekonstruktion.
- Kinematische Analyse.

Decay search-Prozedur:

- Suche nach Zerfällen innerhalb einer Spur.
- Suche nach zusätzlichen Spuren.

Performance & Statistik

Ausblick

Suche nach $u_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Das erste ν_{τ} -Kandidat-Ereignis

ED-Ansicht:

- 22. August 2009, 19:27h (UTC).
- *µ*-loses Ereignis 9234119599.

UH

 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Ausblick

)PER

Das erste ν_{τ} -Kandidat-Ereignis

ECC-Rekonstruktion:

- Primäre *v*-Wechselwirkung: 7 Spuren ausgehend vom primären Vertex.
- Spuren 4, 8: Sichtbarer Knick.

Universität Hamburg

Performance & Statistik

Das erste ν_{τ} -Kandidat-Ereignis

ECC-Rekonstruktion:

Elektromagnetische Schauer:

• γ 1, γ 2: Ausgehend vom sekundären Vertex.

Kinematische Schnitte (hadr. 1-prong τ -Zerfallskanal):

• Alle kinematischen Schnitte für $\geq 1\,\gamma$ ausgehend vom Zerfallsvertex werden überlebt.

 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen Performance & Statistik

Das erste ν_{τ} -Kandidat-Ereignis

Tochter-Teilchen:

- 2-prong-Zerfall 7 Wände strahlabwärts des Erzeugungsvertex.
- Impuls: $p = 12^{+6}_{-3}$ GeV.
- \triangleright Hypothese: π^- .

Invariante Masse des $\gamma\gamma$ -Systems:

- $(120 \pm 20(stat.) \pm 35(syst.)) \, MeV/c^2$.
- ▷ Konsistent mit der Masse des π^0 : $m_{\pi^0} = 135 \,\mathrm{MeV/c^2}$.

Invariante Masse des $\pi^- \gamma \gamma$ -Systems:

- $(640^{+125}_{-80}(stat.)^{+100}_{-90}(syst.)) \,\mathrm{MeV/c^2}.$
- ▷ Konsistent mit der Masse^{*} des ρ^- (770): $m_{\rho^-} = 775 \,\mathrm{MeV/c^2}$.

*) $\rho^{-}(770)$ entstehen in 25% aller τ^{-} -Zerfälle: $\tau^{-} \rightarrow \rho^{-}(\pi^{-}\pi^{0})\nu_{\tau}$.

Das OPERA-Experiment $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen Performance & Statistik

Signifikanz des ν_{τ} -Nachweises

Analysierte Datenmenge von 2008 + 2009:

- 2978 ± 75 erwartete Ereignisse (inkl. Effizienzen).
- 2738 decay-searched Ereignisse, entsprechend 4.88×10^{19} p.o.t. (92% der gesamten Daten von 2008 + 2009).
- 1 Signalereignis (hadronischer 1-prong τ -Zerfallskanal).

Erwartetes Signal^{*} (hadr. 1-prong τ -Zerfallskanal):

• ν_{τ} CC: 0.49 ± 0.12(*syst.*) Ereignisse.

Erwartetes Signal^{*} (alle τ -Zerfallskanäle):

• ν_{τ} CC: 1.65 \pm 0.41(*syst.*) Ereignisse.

*) Annahmen: $\Delta m_{23}^2 = 2.5 \times 10^{-3} \, \text{eV}^2$ und $\sin^2 2\theta_{23} = 1$.

 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen Performance & Statistik

Signifikanz des ν_{τ} -Nachweises

Erwarteter Hintergrund (hadr. 1-prong τ -Zerfallskanal):

- **Gesamt:** $0.05 \pm 0.01(syst.)$ Ereignisse.
- \triangleright p-Wert (nur Hintergrund): 5%.
- ▷ Signifikanz des $\nu_{\mu} \rightarrow \nu_{\tau}$ -Nachweises: 95 %.

Erwarteter Hintergrund (alle τ -Zerfallskanäle):

- Gesamt: 0.16 ± 0.03 (*syst.*) Ereignisse.
- \triangleright p-Wert (nur Hintergrund): 15 %.
- ▷ Signifikanz des $\nu_{\mu} \rightarrow \nu_{\tau}$ -Nachweises: 85 %.

Performance & Statistik

Ausblick

Performance & Statistik

Ereignis-Statistik

Analysestand Dezember 2011 (Run-Jahre 2008 - 2011)

- Vertex lokalisiert: 4056 Ereignisse.
- Decay search durchgeführt: 3662 Ereignisse.

UН

 $u_{\mu} \rightarrow
u_{\tau}$ -Oszillationen

Performance & Statistik

OPERA: Erwartete Performance

Annahmen:

- $\Delta m_{23}^2 = 2.5 \times 10^{-3} \, \mathrm{eV}^2$.
- $\sin^2 2\theta_{23} = 1.$
- $22.5\times10^{19}\,\mathrm{p.o.t.}$

Erwartete *v*-Wechselwirkungen im Target:

- ν_{μ} CC + NC-Wechselwirkungen: ~ 23600.
- $\nu_e + \overline{\nu}_e$ CC-Wechselwirkungen: ~ 160.
- ν_{τ} CC-Wechselwirkungen: ~ 115.

Erwartete nachgewiesene Signal- und Hintergrundereignisse:

- ν_{τ} CC Signal (alle Zerfallskanäle): 7.63 Ereignisse.
- Hintergrund (alle Zerfallskanäle): $0.73 \pm 0.15(syst.)$ Ereignisse.

Performance & Statistik

Ausblick

Ausblick

Ausblick

Performance & Statistik

Ausblick

Ausblick:

- Analyse der in 2010 + 2011 gesammelten Daten (entsprechend $8.88 \times 10^{19}\, \rm p.o.t.)$ in vollem Gange.
- Start des CNGS-run 2012 in diesem Monat.
- LHC geschlossen wegen Wartungsarbeiten und Upgrade in 2013.

Andere Forschungsthemen:

- Suche nach $\nu_{\mu} \rightarrow \nu_{e}$ -Oszillationen (Appearance).
- Messung der *v*-Geschwindigkeit.
- Untersuchung der Oszillation atmosphärischer ν.
- Messung des Ladungsverhältnisses atmosphärischer μ .

Vielen Dank für Ihre Aufmerksamkeit!

IIHE-ULB Brussels

IRB Zagreb

LAPP Annecy

IPNL Lvon

Deutschland:

Israel:

ж

IPHC Strasbourg

Universität Hamburg

Technion Haifa

 $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen

Performance & Statistik

Ausblick

Die OPERA-Kollaboration

11 Länder, 30 Institute, 154 Physiker:

Belgien:

Kroatien:

Frankreich:

- Italien:
 - INFN-LNGS Assergi
 - University & INFN Bari
 - University & INFN Bologna
 - University & INFN-LNF Frascati
 - University & INFN l'Aquila
 - University & INFN Naples
 - Univeristy & INFN Padova
 - University & INFN Rome
 - University & INFN Salerno

Japan:

- University Aichi
- University Toho
- University Kobe
- University Nagoya
- University Utsunomiya

Korea:

University Jinju

Russland:

- JINR Dubna
- ITEP Moscow
- INR-RAS Moscow
- LPI-RAS Moscow
- SINP-MSU Moscow

Schweiz:

- LHEP Bern
- ETH Zurich

Türkei:

METU Ankara

