

ν_e Appearance at OPERA Electromagnetic Shower Energy Estimation

Annika Hollnagel (annika.hollnagel@physik.uni-hamburg.de) for the OPERA-Hamburg Working Group

University of Hamburg Institute for Experimental Physics

DPG Frühjahrstagung 2014, Mainz

1

Universität Hamburg

bmb+f - Förderschwerpunkt OPERA Großgeräte der physikalischen

Grundlagenforschung

The OPERA Experiment

OPERA: Oscillation Project with Emulsion Tracking Apparatus

- Appearance search: Direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations (detection of τ production & decay)
- ν beam: High-intensity & high-energy long-baseline ν_{μ} beam (CERN \rightarrow LNGS: \sim 730 km)
- Detector: Large target mass ($\sim 1.25 \, \mathrm{kt}$), high precision ($\mathcal{O}(\mu \mathrm{m})$)
- Location: Laboratori Nazionali del Gran Sasso (LNGS) (1 400 m rock coverage, 3 800 m w.e.)

The CNGS Neutrino Beam

$\nu_{\mu} \rightarrow \nu_{e}$ oscillation search:

- Intrinsic ν_e beam contamination
- No OPERA near detector
- ▷ Reliable MC required (interaction rates & detector efficiencies)

The OPERA Detector

The OPERA hybrid detector

- Electronic Detector (ED): TT (scintillator), PT (drift tubes), RPC & XPC & VETO (RPC)
- Emulsion Cloud Chamber (ECC) detectors: $\sim 150\,000$ bricks

Ш

The OPERA Detector

Target area:

- Emulsion Cloud Chamber (ECC) bricks: $57 \times 2 \text{ AgBr}$ nuclear emulsions on plastic bases, 56 lead plates ($\sim 10 X_0$)
- Changeable Sheets (CS): 2 extra emulsion sheets (per brick)
- Target Tracker (TT): 31 walls of plastic scintillator strips (per SM)

$\nu_{\mu} \rightarrow \nu_{e}$

Oscillation Search

ECC reconstruction: Event 9301040593

A ν_e **Event**

ED reconstruction: Event 9301040593

💾 Universität Hamburg

UH

General event selection:

- ED: NC-like events, TT predictions for large-area CS scan
- ECC: Scan-back of CS tracks, ν interaction vertex search

CS em shower hints:

- Interpolation of 1ry vertex tracks to CS
- Expanded scan volume, analysis of downstream bricks

Backgrounds:

- ν_e from intrinsic beam contamination
- e^+e^- from π^0 decays misidentified as single-e
- ν_{τ} CC interactions with $\tau \rightarrow e$

Energy reconstruction in the ED:

- Reconstructed energy deposition in the TT
- Calibration obtained using MC

Ш

ν_e Energy Reconstruction

Energy reconstruction:

$2008 + 2009 \ \nu_e$ candidate events

Cuts on $E_{\nu,rec}$: Separation of signal & background

Energy cut		20 GeV	30 GeV	No cut
BG common to	BG (a) from π^0	0.2	0.2	0.2
both analyses	BG (b) from $\tau \rightarrow e$	0.2	0.3	0.3
	ν_e beam contamination	4.2	7.7	19.4
Total expected BG in 3-flavour oscillation analysis		4.6	8.2	19.8
BG to non-standard	ν_e via 3-flavour oscillation	1.0	1.3	1.4
oscillation analysis only				
Total expected BG in non-standard oscillation analysis		5.6	9.4	21.3
Data		4	6	19

Assumptions:

UHI .

2008 + 2009 data sample:

- 5255 ν CC interactions (5.25 × 10¹⁹ p.o.t.)
- $\triangleright \nu_e$ candidates: 19 events

Separation of beam contamination and oscillated ν_e :

- ν energy cut: $E_{\nu,rec} < 20 \,\text{GeV}$
- Expected BG: 4.6 events
- Expected signal: 1.0 events
- \triangleright **Remaining** ν_e candidates: 4 events

Compatible with no-oscillation hypothesis:

• $\sin^2(2\theta_{13}) < 0.44$ (90% C.L.)

Separation of BG and oscillated ν_e :

- ν energy cut: $E_{\nu,rec} < 30 \,\mathrm{GeV}$
- Expected BG: 9.4 events
- $\triangleright \text{ Remaining } \nu_e \text{ candidates:} \quad 6 \text{ events}$

 $P_{\nu_{\mu} \rightarrow \nu_{e}} = \sin^{2}(2\theta_{new}) \cdot \sin^{2}(1.27 \cdot \Delta m_{new}^{2}L[\mathrm{km}]/E[\mathrm{GeV}])$

Bayesian Analysis: $\sin^2(2\theta_{new}) < 7.2 \times 10^{-3}$ for $\Delta m_{new}^2 > 0.1 \, \text{eV}^2$ (90% C.L.)

UН

Conclusion & Outlook

15

Conclusion

Conclusion: $u_{\mu} \rightarrow \nu_{e} \text{ oscillation search (} 2008 + 2009 \text{ data)}$

- Confirmed ν_e candidate events: 19
- Compatible with 3-flavour no-oscillation hypothesis: $\sin^2(2\theta_{13}) < 0.44 \qquad (90\% \text{ C.L.})$
- New limits on non-standard oscillation analysis:

 $\sin^2(2 heta_{\it new}) < 7.2 imes 10^{-3}$ for $\Delta m^2_{\it new} > 0.1\,{
m eV}^2$ (90% C.L.)

Outlook: $u_{\mu} \rightarrow \nu_{e}$ oscillation search (2008 – 2012 data)

- Analysis of full data sample:
- Statistics ×3.4
- Improvement of energy estimation, decrease of uncertainties:
- ED: Extension of energy estimation to RPC data, event-by-event energy calibration
- ▷ **ECC:** *em* shower energy estimation

Thank you for your attention!

The OPERA Collaboration

11 countries, 29 institutes, \sim 150 physicists:

Belgium:

• IIHE-ULB Brussels

Croatia:

IRB Zagreb

France:

- LAPP Annecy
- IPHC Strasbourg

Germany:

Hamburg University

Israel:

ж

Technion Haifa

Italy:

- INFN-LNGS Assergi
- University & INFN Bari
- University & INFN Bologna
- University & INFN-LNF Frascati
- University & INFN l'Aquila
- University & INFN Naples
- Univeristy & INFN Padova
- University & INFN Rome
- University & INFN Salerno

Japan:

- University Aichi
- University Toho
- University Kobe
- University Nagoya
- University Utsunomiya

Korea:

University Jinju

Russia:

- JINR Dubna
- ITEP Moscow
- INR-RAS Moscow
- LPI-RAS Moscow
- SINP-MSU Moscow

Switzerland:

- LHEP Bern
- ETH Zurich

Turkey:

METU Ankara

- N. Agafonova et al. [OPERA Collaboration], Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations with the OPERA experiment in the CNGS beam, JHEP **1307** (2013) 004
- N. Agafonova et al. [OPERA Collaboration], Study of neutrino interactions with the electronic detectors of the OPERA experiment, New J. Phys. 13 (2011) 053051
- N. Agafonova et al. [OPERA Collaboration], The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment, JINST 4 (2009) P06020
- R. Acquafredda *et al.* [OPERA Collaboration], *The OPERA experiment in the CERN to Gran Sasso neutrino beam*, JINST **4** (2009) P04018
- A. Anokhina et al. [OPERA Collaboration], Emulsion sheet doublets as interface trackers for the OPERA experiment, JINST 3 (2008) P07005
- CNGS neutrino flux calculations webpage, http://www.mi.infn.it/ psala/lcarus/cngs.html