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Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) detector of 20kTon liquid scintil-
lator and an optical coverage of 78% yields an energy resolution of 3% per MeV. Therefore,
the determination of the mass hierarchy of neutrinos will be possible. Due to the overbur-
den of 700m rock and the diameter of 34,4m of the detector target volume, the muon rate is
∼ 3Hz. Thus, the muon background rejection is an important task. Veto strategies for JUNO
rely on a good tracking of background events to reduce the effective deadtime of the detec-
tor. Especially showering muons yield huge deadtimes, because they are heavily linked to the
creation of spallation isotopes 9Li and 8He. These isotopes have decay channels yielding the
same coincidence, as the main neutrino detection channel.

Within this bachelor thesis, a reconstruction algorithm for a topological reconstruction of
the spatial number density of emitted photons was improved in order to detect and analyse
showering muon events. Adjustments for the near field of photomultiplier tubes, a statistical
correction for scattered light and algorithms for a fast event topology were applied. Further-
more, the spatial resolution of epicentres of showering muon events was qualitatively exam-
ined. Finally, a rough spatial number density of emitted photons for showering muon events
was reconstructed minimizing the computation time.



Zusammenfassung

Der JUNO detector stellt mit seinen 20kTon Flüssigszintillator und seiner optischen Abdeck-
ung von 78% eine Energieauflösung von 3% pro MeV für die Bestimmung der Neutrino-
massenhierarchie bereit. Damit ist es möglich, die Massenhierarchie der Neutrinos zu bes-
timmen. Aufgrund der Überdeckung von 700m Gestein und einem Durchmesser von 34,4m
des Detektionsvolumens ist die Myonenrate ∼ 3Hz. Damit ist die Unterdrückung des My-
onenhintergrunds eine wichtige Aufgabe. Die Vetostrategien für JUNO obliegen dabei einer
guten topologischen Bestimmung der Myonen, um die effektive Tozeit des Detektors zu ver-
ringern. Vor allem schauernde Myonen bringen große Totzeiten mit sich, da sie primär für
die Entstehung von Spaltprodukten wie 9Li und 8He verantwortlich sind. Diese Isotope haben
Zerfallkanäle welche das Detektionssignal nachahmen.

In dieser Bachelorarbeit wurde ein Rekonstruktionsalgorithmus für die Bestimmung der
örtlichen Wahrscheinlichkeitsdichte emittierter Photonen hinsichtlich schauernder Myonen
verbessert. Dafür wurden Anpassungen für das Nahfeld der Photomultiplier, eine statistis-
che Bereinigung von gestreutem Licht und Algorithmen für eine schnelle Topologiefindung
angewandt. Weiterhin wurde die Auflösung von schauernden Myonen qualitativ untersucht.
Dies resultierte in einer ungefähren örtlichen Wahrscheinlichkeit für emittierte Photonen von
schauernden Myonen mit reduzierter Rechenzeit des Rekonstruktionsalgorithmus.
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1 Introduction

First regarded as impossible to detect by its proposer Wolfgang Pauli in 1930, advanced de-
tector technology has made the impossible possible with the detection of the anti electron
neutrino via the weak interaction in 1956 by Cowan and Reines.

The characterization of neutrinos has since been approached with a huge effort in parti-
cle physics. With the discovery of neutrino oscillations, which described the solar neutrino
problem issued by the Homestake experiment by R. Davis in the late 1960s, a new field to
measure neutrino parameters has been established. Neutrino oscillations are transitions be-
tween the neutrino flavours, measured via the weak interaction. This is possible, because
the mass eigenstates and the weak eigenstates of neutrinos are distinct. Neutrino oscillations
therefore demand for a non zero neutrino mass. The absolute mass, as well as the mass hi-
erarchy of the three neutrino masses is unknown. Determining, whether the normal mass
ordering m1 < m2 < m3 or the inverted mass ordering m3 < m1 < m2 is true, yields a better
discrimination for other neutrino experiments.

For this matter, the multi-purpose neutrino detector JUNO, located near Kaiping, China, is
a promising experiment based on the liquid scintillator technology, with the focus set to the
neutrino mass hierarchy. Therefore reactor anti electron neutrinos from two nearby nuclear
powerplants are to be measured via the inverse beta decay, which yields a coincidence of light
signals. Due to JUNO’s huge detector volume with a total mass of 20kT liquid scintillator and
an optical coverage of 78%, it provides huge statistics with an excellent energy resolution of
3% per MeV.

With the detection volume of neutrino detectors growing massively over the last decades, a
huge demand is set to the background rejection of cosmogenic muons, which produce spalla-
tion isotopes in the liquid scintillator yielding the same coincidence upon their nuclear decay.
Furthermore it was found in the former Kamioka Liquid Scintillator AntiNeutrino Detector
(KamLAND) experiment, that production of spallation isotopes is heavily linked to show-
ering muons. In the KamLAND experiment cosmogenic muons were vetoed with the total
measurement data discarded for a designated time. For JUNO this veto rule would yield an
effective measurement time of about zero due to the larger muon flux. Thus, a special effort
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1 Introduction

lies onto the tracking of cosmogenic muons to enable a partial veto for the detector, which
reduces the effective deadtime.

Previous tracking methods for large liquid scintillator detectors only involve the determi-
nation of the track of the muon, thus only permitting a cylindrical veto around the track. A
novel reconstruction approach for the spatial number density of emitted photons developed by
Björn Wonsak yields a spatial energy deposition based on an iterative process. This may be
an approach to improve the veto strategies with more suitable shapes in the upcoming JUNO
experiment.

An enhanced version of the novel reconstruction approach regarding showering muons was
developed and discussed in this bachelor thesis. This featured optimizations of the near field of
Photomultiplier Tube (PMT)s, a statistical approach to correct scattered light and an algorithm
for fast event topologies as an foundation for the novel reconstruction algorithm. Furthermore,
a qualitative examination of showering muons with close attention to the detection of epicen-
tres of showering muons was conducted with data simulated with the Low Energy Neutrino
Astronomy (LENA) simulation.

Chapter 2 explains the JUNO experiment, as well as the theoretical background of neutrino
oscillations, followed by an introduction into the LENA simulation and the novel reconstruc-
tion algorithm in chapter 3. The creation of multi-GeV muons, which are most likely to induce
a muon shower, with the LENA simulation package is described in section 4.1. The problems
of the novel reconstruction algorithm regarding multi-GeV muons are discussed in section 4.2.
Then a new approach to correct scattered light in the novel reconstruction algorithm is intro-
duced theoretically in section 4.3 followed by its implementation in section 4.4. An updated
version regarding the probability mask as a base for the former algorithm for scattered light
is explained afterwards in section 4.5. The evaluation of the enhanced reconstruction algo-
rithm can be looked up in section 4.7 followed by a quantitative examination of the enhanced
reconstruction algorithm regarding the detection of epicentres of showering muons in section
4.8.
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2 Neutrino physics

This chapter contains the basic physics to understand the motivation and physics goal of the
JUNO experiment.

2.1 The Standard Model of particle physiscs

The Standard Model (SM) is the general theory of particle physics concerning the today known
fundamental particles, their corresponding antiparticles and interactions excluding gravitation.
Todays SM consists of 3 interactions, 12 fundamental fermions and their corresponding anti-
fermions, 4 gauge bosons and the Higgs Boson as seen in figure 2.1.
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2 Neutrino physics

All known fundamental fermions can be divided into quarks and leptons. The SM con-
tains six quarks of three generations formed by the up/down-, charm/strange- and top/bottom-
quark. Quarks carry mass, fractional electric charge and colour charge. Additionally, taking
the confinement-theory [18] into account, quarks do not occur isolated and are only found
bound in hadrons.

The leptons are represented by the electron e, muon µ and tau τ and the respective neutrinos
(electron-neutrino νe, muon-neutrino νµ , tau-neutrino ντ ). While the electron, muon and tau
carry electric charge the neutrinos are of electric charge zero. All charged leptons carry mass
and do not carry any color charge. (See section 2.2).

The gauge bosons are the exchange particles of the three fundamental interactions in the
SM and often referred to force carriers.

The theoretical approach of the SM is a gauge theory based on the local symmetry of the
gauge group [40]:

SU(3)C×SU(2)L×U(1)Y (2.1)

This gauge group is the direct product of three subgroups as shown in equation 2.1.

The subgroup SU(3) is the color charged sector with the strong interaction described by
Quantum Chromo Dynamics (QCD) [19]. Its quantum number is the color charge and its
resulting gauge bosons are eight color charged gluons and one color neutral gluon of mass and
electric charge zero. Thus only the color charged quarks and the gluon itself take place in the
strong interaction.

The SU(2)×U(1) subgroup is the electroweak sector also referred to as Glashow-Weinberg-
Salam-Theory [29]. It describes the electromagnetic- and weak interaction.

The electromagnetic interaction described by Quantum Electro Dynamics (QED) is medi-
ated by its gauge boson, the photon γ , and only affects electric charged particles.

The weak interaction is carried by the W± and Z0 gauge bosons and couples to all funda-
mental fermions and the weak gauge bosons. The weak interaction is separated into electric
charged currents (Charged Current (CC)) mediated by the W±-Bosons and neutral currents
(Neutral Current (NC)) mediated by the Z0 Boson. Contrary to the photon and gluon the
gauge bosons of the weak interactions have mass and are thus responsible for "weakness" of
the weak interaction as they limit its range.

While the strong and electromagnetic interaction conserve all quantum numbers (except
the isospin I), the weak interaction breaks Parity (P) and Charge Parity (CP) symmetry. By
parity symmetry the symmetry of a physical process under inversion of all spatial coordinates
is meant. Thus the inverted physical process does not violate the laws of physics. The charge
parity symmetry covers both parity symmetry and charge symmetry. The charge symmetry is
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2.2 Neutrinos

an inversion of all electrical charges. Thus every particle is replaced by its antiparticle and
vice versa.

Additionally the quark flavour can change in weak interactions with the probabilities de-
scribed in the Cabibbo-Kobayashi-Maskawa (CKM)-matrix [50] since the weak quark eigen-
states are superpositions of the quark-mass-eigenstates.

The inclusion of neutrinos in the weak interaction which do not take place in the strong nor
the electromagnetic interaction is another notable fact, since it makes neutrinos exquisitely
hard to detect.

The Higgs Boson and Higgs-Mechanism as well as gravity gets no further explanation as it
is listed only for the sake of completeness.

2.2 Neutrinos

The SM lists the neutrino as a massless Dirac - fermion of spin 1
2 . Furthermore it does neither

carry electric nor color charge [37]. Each lepton flavour e, µ , τ has its corresponding neutrino
νe, νµ , ντ . The antiparticles correspond to the antineutrinos denoted as ν̄e, ν̄µ , ν̄τ . This leaves
three generations of leptons.

Being of no electric and color charge neutrinos only interact via the weak interaction making
them hard to detect.

To maintain the conservation of energy, momentum and angular momentum in β -decays,
Pauli postulated the neutrino in 1930 [18]. Today the β -decay is known to be a weak decay
of a neutron n into a proton p, an electron e− and an anti electron neutrino νe (β−-decay)

n = p+ e−+νe, (2.2)

or a proton p into a neutron n, a positron e+ and an electron neutrino νe (β+-decay)

p = n+ e++νe. (2.3)

A third option, although no β -decay itself, because of the lack of β -radiation, is the electron
capture.

p+ e− = n+νe. (2.4)

A possibility to detect a neutrino works exactly the opposite way via the inverse β -decay 1

as seen in equation 2.5 [7].

1Neglecting the inverse β−-decay since the later introduced JUNO experiment detects reactor antineutrinos [7]
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2 Neutrino physics

Furthermore, the Feynman diagram in figure 2.2 illustrates the weak interaction via a W+

gauge boson.
p+νe = n+ e+ (2.5)

d
u
u

d
u
d

νe e+

W+

p n

Figure 2.2: Feynman diagram of the inverse β -decay used to detect νe. Created with TikZ-
Feynman [20].

The anti electron neutrino was first detected by Cowan and Reines in 1956 [16] by identi-
fying the inverse beta decay by its coincidence of a positron electron annihilation followed by
a neutron capture.

Up to now there are unsolved questions regarding the neutrino. It is still to be clarified
whether the neutrino is its own antiparticle (Majorana-fermion) or not (Dirac-fermion). Fur-
thermore the standard model lists the neutrino as a zero rest mass particle, though there is
evidence that neutrinos have mass. The absolute neutrino masses as well as the hierarchy of
the neutrino masses are still unknown. This matter is described in the following section 2.2.1.

2.2.1 Neutrino-Oscillations

In the later 1960s R. Davis measured a deficit of less than one half of the electron neutrino
flux predicted by J.N. Bahcalls standard solar model [9, 17].

Further evidence was given by the Sudbury Neutrino Observatory (Sudbury Neutrino Ob-
servatory (SNO)) directly indicating a non-electron flavour component in the solar neutrino
flux [14].

Instead of changing the standard solar model the so called solar neutrino problem was ex-
plained with neutrino flavour changing.

Like quarks the weak eigenstates of neutrinos are superpositions of their mass eigenstates.
With these two sets of eigenstates being distinct lepton flavour mixing (neutrino oscillations)
is enabled. In the consequence neutrinos must carry mass 2.

In a short theoretical introduction based on [50] the neutrinos are described by the n flavour
eigenstates |να〉 and the n mass eigenstates |νi〉.

2For simplicity massive neutrinos in oscillations are called neutrinos, too
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2.2 Neutrinos

Both sets of eigenstates are orthonormal (see equation (2.6)).

〈να |νβ 〉= δαβ 〈νi|ν j〉= δi j (2.6)

Furthermore they are connected by the n×n unitary mixing matrix U 3:

|να〉= ∑
i

Uαi |νi〉 |νi〉= ∑
α

U∗αi |να〉 (2.7)

The stationary mass eigenstates show dependence in time and position (See equation 2.8)
assuming a neutrino propagating with momentum pi in x-direction.

|νi(x, t)〉= e−iEiteipx |νi〉 (2.8)

The energy Ei of a neutrino mass eigenstate |νi〉 can be expressed using the relativistic
energy-momentum relation 4.

Ei =
√

p2 +m2
i = p

√
1+

m2
i

p2 ≈ p+
m2

i
2p
≈ E +

m2
i

2E
(2.9)

Whereby the Taylor expansion is justified by p� mi and E ≈ p is the neutrino energy.
With the weak interaction being the sole way to detect neutrinos, a time dependent develop-
ment of the neutrino state |να(x, t)〉 depending on the n flavour eigenstates |να〉 is desirable.

Starting with the unitary transformation 2.7 and using the time and position dependencies
(See equation 2.8) of the mass eigenstates |να(x, t)〉 can be written as.

|να(x, t)〉= ∑
i

Uαieipxe−iEit |νi〉 (2.10)

Finally using equation 2.7 the neutrino state |ν(x, t)〉 can be written as a superposition of
the n flavour eigenstates.

|να(x, t)〉= ∑
i,β

UαiU∗β ie
ipxe−iEit |νβ 〉 (2.11)

Given the fact that neutrino masses are different, the phase factors eipxe−iEit in equation
2.11 are different for the terms of the sum. Thus the final flavour state |ν(x, t)〉 does not equal
the initial flavour state |να〉.

3For antineutrinos the mixing is given by |να〉= ∑i U∗αi |ν i〉
4Using natural units: c = 1

7



2 Neutrino physics

Multiplying a flavour eigenstate from the left provides the time dependent transition ampli-
tude for a flavour change from να → νβ .

A(α → β )(t) = 〈νβ |ν(x, t)〉= ∑
i

U∗
β iUαiexp(−i

m2
i

2
L
E
) = A(α → β )(L/E) (2.12)

The experiment-favoured equation is the spatial dependent amplitude 2.12 using the distance
between the detector and source L = x = ct and the relativistic energy momentum relation 2.9.
Taking its square of the absolute value provides the transition probability P of flavour state να

to νβ .

P(α → β )(t) = |A(α → β )|2 = δαβ −4 ∑
j>i

UαiUα jUβ iUβ jsin2(
∆m2

i j

4
L
E
) (2.13)

In addition Uαi are taken real neglecting CP-violation and ∆m2
i j =m2

i −m2
j being the difference

between the squared masses of two neutrino states. For the experimental site a fixed L/E

leaves a dependency on ∆m2
i j and thus making ∆m2

i j accessible for a measurement.
The n2 parameters of the unitary mixing matrix can be reduced to (n− 1)2 independent

parameters due to the realtive phases between the neutrino states. These parameters are com-
monly divided into 1

2n(n− 1) weak mixing angles and 1
2(n− 1)(n− 2) CP-violating phases

[50]. For the three known lepton flavours U has three weak mixing angles [θ12,θ13,θ23]and
one CP-violating phase δ and is called the Pontecorvo-Maki-Nakagawa-Sakata(Pontecorvo-
Maki-Nakagawa-Sakata (PMNS))-matrix [7]. UPMNS can be parametrized by

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s13s23eiδ c12c23− s12s13s23eiδ c13s23

s12s23− c12s13c23eiδ −c12s23− s12s13c23eiδ c13c23


eiρ 0 0

0 eiσ 0
0 0 1


(2.14)

For reasons of clarity the denotations ci j = cos(θi j) and si j = sin(θi j) are utilized. The sec-
ond diagonal matrix is the Majorana phase matrix which is not affecting neutrino oscillations
but is listed for the sake of completeness [7].

Summarizing the standard three lepton flavour case contains six independent parameters
given those of the UPMNS-matrix and two neutrino mass-squared differences ∆m2

21, ∆m2
31.
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2.2 Neutrinos

Evidence for neutrino oscillations and a good measurement of θ12,θ13,θ23,∆m2
21 and |∆m2

31|
(see tab. 2.1) has been established by several experiments regarding solar (e.g. SNO), atmo-
spheric (e.g. Super-Kamiokande), accelerator (e.g. Tokai to Kamioka (T2K)) and reactor (e.g.
KamLAND) neutrino oscillations [7, 12].

There are still open issues concerning the oscillations of massive neutrinos. The sign of
∆m2

31 is yet to be determined. Upon now it is not known, whether the mass hierarchy of the
neutrinos follows the normal ordering (m1 < m2 < m3, see figure 2.3a) or the inverted ordering
(m3 < m1 < m2, see figure 2.3a). Note that other neutrino oscillation parameters (θ13,θ23,δ )
are sensitive to the sign of ∆m2

31 due to the approach of measurement of the experiments. The
absolute values of neutrino masses can not be measured by observing neutrino oscillations and
are yet to be determined through other experiments. Though 3H beta decay experiments set
the upper boundary for the effective electron neutrino mass m(eff)

νe to 2eV [37]. The effective

electron neutrino mass is given by m(eff)
νe =

√
|∑iUPMNS,1i|2m2

νi .

m2

m2
1

m2
2

m2
3

0

ν1
νe νµ ντ

ν2

ν3

∆m2
atm ≈ 2 ·10−3 MeV

∆m2
sol ≈ 7 ·10−5 MeV

?

(a) Normal mass hierarchy

m2

m2
3

m2
1

m2
2

0

ν1

ν2

ν3
νe νµ ντ

∆m2
atm ≈ 2 ·10−3 MeV

∆m2
sol ≈ 7 ·10−5 MeV

?

(b) Inverted mass hierarchy

Figure 2.3: Visualization of the normal and inverted mass hierarchy. The squared mass differ-
ences are denoted by ∆m2

atm ∼ |∆m2
31| ∼ |∆m2

32| and ∆m2
sol ∼ ∆m2

21. Atmospheric
(atm) and solar (sol) are commonly used to denote the mass differences measured
with the neutrinos originating from the atmosphere or the sun respectively. The
coloured bars represent the mass eigenstates as a composition of the flavour eigen-
states with the uncertanties originating from the unknown CP-violating phase δCP
[39].
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Furthermore, the CP-violating phase δCP is yet to be measured precisely with just hints for
a non zero δCP ∼ 1.4π [12].

Needlessly to say a precise measurement of all six independent neutrino oscillation param-
eters is favoured in upcoming experiments. The current state of the six values is presented in
tabular 2.1.

Table 2.1: Values of the neutrino oscillation parameters in 1σ range for normal and inverted
neutrino mass ordering [7]

Parameter Normal neutrino mass ordering Inverted neutrino mass ordering

∆m2
21[10−5eV 2] 7.32−7.80 7.32−7.80

∆m2
31[10−3eV 2] 2.41−2.53 2.36−2.48

sin2(θ12)[10−1] 2.91−3.25 2.91−3.25
sin2(θ13)[10−2] 2.15−2.54 2.18−2.59
sin2(θ23)[10−1] 4.14−4.70 4.24−5.94

δCP[rad] 1.12−1.77 0.98−1.60

Another possible field of application for neutrino oscillations is the search for hypothesized
sterile neutrinos. These new neutrino flavours do not participate in the weak interaction but
possibly in neutrino oscillations via flavour changes between active5 and sterile neutrinos.
This would expand the earlier introduced three flavour case [7].

This motivates the ongoing scientific effort for experiments regarding neutrino oscillations.
The JUNO experiment which is part of these efforts is described in the next section.

2.3 JUNO-Detector

The Jiangmen Underground Neutrino Observatory (JUNO) located in Jiangmen, China near
Kaiping city is a multi-purpose neutrino experiment based on a large volume liquid scintillator
detector.

The JUNO-Detector has several nuclear power plants (NPP) nearby creating the reactor
anti electron neutrino flux needed for JUNO’s science goals. The anti electron neutrinos are
detected via the inverse β -decay. Thus the detector measures a positron, which ends in a
positron electron annihilation, and a signal of a neutron capture [7].

5Active neutrinos (νe, νµ , ντ ) take part in the weak interaction
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Figure 2.4: Location of the JUNO experiment with the Yangjiang and Taishan Nuclear Power
Plant (NPP). The distance is ∼ 53km for both. For a good overview Hongkong
and Kaiping are marked. Created with [2].

For the determination of the neutrino mass hierarchy, the NPP located in Yangjiang and
Taishan are of special interest due to their baseline of ∼ 53km to JUNO. This baseline length
combined with the expected anti electron neutrino spectrum is outstanding regarding the sen-
sitivity for determining the mass hierarchy [1, 7] (For details see 2.3.2).

Regarding the reduction of the flux of cosmic muons, which induce an inadvertent back-
ground signal, the JUNO-Detector is to be build in an underground laboratory under the Dashi
hill. In total the overburden of granite is more than 700m, which is 2000m mass water equiv-
alent [43]. This reduces the muon flux to an average of 0.003 Hz

m2 [7].

2.3.1 JUNO: The detector

The detector of the JUNO experiment itself consists of a spheric vessel filled with 20kton
liquid scintillator centered in a cylindrical pool of a water Cherenkov detector overlain by a
muon tracker.

The central detector has a diameter of 35.4m and is filled with liquid scintillator6. It is sur-
rounded by a 75% to 78% coverage of about 18000 20inch and 36000 3inch photo multiplier
tubes (PMTs) in a buffer liquid shielding from the radioactivity of the PMT glass. The total
diameter of the detector’s outter vessel adds up to 40m [7].

6Linear alkylbenzene (Linear AlkylBenzene (LAB)) with a wavelength shifter PPO and bis-MSB [49]
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2 Neutrino physics

Figure 2.5: Sketch of the JUNO detector [7].

In total a energy resolution of 3% for 1MeV is to be expected [1], which guarantees an
unmatched measurement of neutrino oscillations. The water Cherenkov detector consists out
of 20kTon of pure water with about 2400 20inch veto-PMTs, which is expected to have a
muon detection efficiency of about 99.8%. The pool of water is also used to shield the inner
detector from the surrounding radioactivity by keeping a minimum distance of 2m water to
the surrounding rock. The muon tracker on top is also used to measure the muon direction and
covers more than 25% of the detector. The OPERA target tracker is reused for this task [7].
The background rejection is an important task for JUNO as the muon rate is 0.0030 Hz

m2 .

With these properties the JUNO-detector is an excellent experiment for the physics goals
described in the next section 2.3.2.

2.3.2 JUNO: Physics goals

The main goal of the JUNO experiment is to determine the mass hierarchy of the neutrino
masses, which is described explicitly in this section. Furthermore an insight of other applica-
tion fields is given shortly based on [1, 7].

The neutrinos in JUNO are anti electron neutrinos νe originating from a nuclear reactor.
They are to be detected via the inverse beta decay. Therefore the survival probability of a νe

is measured at the designated baseline of ∼ 53km.

The survival probability is given by equation (2.15) as the inverse of the probabilities to
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oscillate into another flavour. It can be derived from equation 2.13 using the values of the

PMNS matrix (See equation 2.14). The abbreviation ∆i j =
∆m2

i j
4

L
E is used.

P(νe→ νe) = 1−P12−P13−P23

= 1−P(νe→ νµ)−P(νe→ ντ)−P(νµ → ντ)

= 1− sin2(2θ12)c4
13 sin2(∆12)− sin2(2θ13)[c2

12 sin2(∆31)+ s2
12 sin2(∆32)]

(2.15)

It is of importance to note that the amplitude is given by the mixing angles θi j and the
frequencies are given by the squared mass differences ∆m2

i j.

The first term P12 is dominant with a large amplitude respectively and causes the main
oscillation based on the solar parameters.

The other two terms have significantly lower amplitudes which only differ slightly. This
makes them interfere with each other. Thus they can not be resolved. But it is possible to
see the high frequency modulation of P13 and P23 on the oscillation P12 induced by the solar
parameters.

With P13 and P23 being dependent on ∆m2
13 and ∆m2

23 respectively, the frequencies of these
oscillations are distinct. Thus the mass hierarchy determines the modulation by governing
which frequency is larger which is depicted in figure 2.6.

Figure 2.6: Antielectron-neutrino flux in the JUNO detector plotted against L
E . The dotted

line represents the flux with no neutrino oscillations. The black line represents the
oscillations induced by the solar parameters. The modulation of the normal mass
ordering is marked in blue, the modulation of the inverted mass ordering is marked
in red. Figure taken from [1].
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The anti electron neutrino flux in arbitrary units is plotted against the conventional distance
over energy L/E. The continuous black line represents the neutrino flux dominated by the
oscillation of P12. The modulations of P13 and P23 are painted in blue and red for the normal
and inverted mass hierarchy respectively. The modulation of the normal mass ordering and
the inverted mass ordering have a phase shift. This difference can be measured with the high
energy resolution provided by the JUNO detector. Furthermore, JUNOs baseline length is at
a point L/E in figure 2.6 where a good discrimination between both mass hierarchies is pos-
sible. A significance between 3 to 4 sigma is expected [1].

Furthermore JUNO, not limited to only detect reactor neutrinos, is designated to measure the
three oscillation parameters ∆m2

12 ∆m2
23 and θ12 on a new level of significance. (see tabular

2.2).

Table 2.2: Current and expected precision on the three oscillation parameters ∆m2
21, ∆m2

31 and
sin2(θ12). [7]

Parameter Current precision Expected precision with JUNO

∆m2
21 3% 0.6%

∆m2
31 5% 0.6%

sin2(θ12) 6% 0.7%

JUNO’s magnificent energy resolution and its huge statistics due to its event rate promise
a precision partially of a magnitude less than former experiments. This allows a better dis-
crimination for other experiments regarding the neutrinoless double beta decay [7] or the
measurement of the CP-violating phase δCP [1].

Although the solar neutrino problem was solved by the SNO experiment [14] and a wide
range of the solar neutrino spectrum was measured by the Borexino-detector [42] there is still
an open question regarding the flux of the CNO-cycle (Carbon (C) - Nitrogen (N) - Oxygen
(O)- cycle), a nuclear fusion chain converting hydrogen (H) into helium (He) [10]. A precise
measurement by JUNO would give insight on the metallicity of the sun.

In addition neutrino oscillations below neutrino energies of 1MeV are best described with
vacuum oscillations and neutrino oscillations with neutrino energies beyond 3MeV are domi-
nated by the Mikheyev-Smirnov-Wolfenstein effect [45]. Measuring the full 8

0B solar neutrino
spectrum7 could verify this theory in the critical transition area of 1−3MeV which is not yet

7The β+-decay of boron-8 yields electron neutrinos in a wide energy range of 10−1 to 101MeV [13]
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measured precisely [1]. JUNO, being a spherical liquid scintilaltor detector similar to Borex-
ino, can do this measurement potentially more precisely with its large statistics, high energy
resolution and low energy threshold [7].

Also geoneutrinos originating from nuclear decays of radioisotopes in the earth’s interior are
of interest. Geoneutrinos will have an expected rate of 300 to 500 interactions per year in
JUNO [7], can be examined with less uncertainty than Boron Solar Neutrino Experiment
(BOREXINO) and KamLAND [21] and may yield more insight on the current geophysical
models.

Furthermore a supernova which emits 99% of its energy as neutrinos can be detected with
JUNO. A neutrino burst of a Supernova of ∼ 10kpc distance is expected to result in about
5000 neutrino events in a few seconds [1]. Another field of application is the Diffuse Su-
pernova Neutrino Background (DSNB) which is formed by the neutrinos originating from the
Supernovae of the universe. The low-energy neutrinos of the DSNB may be detected with
JUNO [7] and give insight on the rate of star emergence.

Finally JUNO will be a good tool to search for new physics such as sterile neutrinos, neu-
trinos from dark matter annihilation processes in the sun and possible non standard neutrino
interactions. This may be an answer to the some still unsolved problems in modern physics.

2.3.3 Muon background in JUNO

Primary cosmic radiation (e.g. high energy protons) produces pions and kaons in the atmo-
sphere of the earth. Pions and kaons are mesons which occur on both charged π+,−, K+,− and
neutral π0, K0 states in the atmosphere. The charged pions and kaons decay into muons, via
the following decays:

π
+/K+→ µ

++νµ , π
−/K−→ µ

−+νµ . (2.16)

Muons originating from the atmosphere are called cosmogenic muons. The muon flux of the
atmosphere is heavily impacted by the matter surpassed. Therefore liquid scintillator detectors
are built in underground laboratories. The total muon event rate of JUNO is expected to be
5s−1 which is caused by the small overburden of 700m [24]. The expected energy distribution
of single muon events can be seen in figure 2.7a.
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(a) Energy distribution of single muon events at depths for JUNO and Reactor Experiment for Neutrino
Oscillation (RENO) 50 (a similar experiment to JUNO). Furthermore, reference depths of exactly
700m or 900m, as well as the depth of JUNO plus 200m are depicted. Figure from [23].

(b) Radial distribution of the 9Li isotopes around the muon track (x-axis) with showering energy (y-
axis). 99% of the 9Li production is within 3.5m around the track of the muon. Figure from [24].

Figure 2.7: (a): Energy distribution of single muon events at variuos depths. (b): 9Li isotope
production around the muon track with respect to the showering energy. Both
simulations are FLUktuierende KAskade (FLUKA) simulations [23, 24].

Cosmogenic muons passing large area liquid scintillator detectors such as JUNO are heav-
ily linked to the creation of cosmogenic radioisotopes like 9Li and 8He. These isotopes are
produced via cosmogenic muon spallation on 12C in the liquid scintillator [23].

The cosmogenic radioisotopes can decay yielding the same coincidence which is used to
detect anti electron neutrinos. This decay channel for 9Li is divided into two parts. First the
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9Li decays via the β decay. Subsequently 9Be decays into two α particles and a neutron n.

For 9Li the background rate in JUNO is expected to be 8.5 · 10−4 Hz with the coincidence
mimicking decay channel weighted with 51%. The values for 8He are 3.0 ·10−5 Hz and 16%
respectively [24,31]. Thus the 9Li background is of primary interest for the JUNO experiment.
Furthermore, the creation of 11C produces a neutron capture, which can possibly be interpreted
for coincidence with a non correlated β -decay, which may be yield by other spallation isotopes
(See table I in [31]).

In particular it was found in KamLAND that radioisotope occurence is heavily amplified by
showering muons [15]. Showering muons are classified by an additional energy deposition
of Eshower > 3GeV to their ionization energy Eionzation. The ionization energy can be precisely
calculated with a muons differential energy loss of dE/dx|µ = 1.43MeV/cm (minimal ionisa-
tion) [23]. The radial distribution of the 9Li isotopes around the muon track with a particular
showering energy can be seen in figure 2.7b. Furthermore about 99% of the 9Li is within a
range of 3.5m around the track of the muon [24].

The physical process of a showering muon is mostly the showering of an electron pro-
duced in an ionization process of a muon as muons itself do not radiate high amounts of
bremsstrahlung.

e−

e−

γ

γ

γ

e+

e−

e+

e−

Figure 2.8: Showering electron: The electron yields a photon due to bremsstrahlung which
interacts via pair production production. The positron and electron then yield an-
other photon which then can interact again via pair production.

Furthermore a hadronic shower of a proton due to 12C spallation is possible. As hadronic
showers induce electromagnetic showers due to π0 production via the strong interaction, elec-
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tromagnetic showers are induced by the photons of the π0 → γγ decay. The cascade of an
electromagnetic shower starts with an electron yielding a high energy photon, which is per-
mitted in matter. These high energy photons primarly interact with the liquid scintillator via
pair production. Pair production is the conversion of a photon into an electron and a positron,
which is permitted for photons in matter, if the energy exceeds the energy of two electron rest
mass energies. The electron and positron created in the pair production often have enough
energy to yield another photon which then interacts again via pair production. This cascade is
stopped when the energy of the photons fall below the energy threshold of two electron rest
masses which energetically forbids another pair production [38]. A showering electron is
depicted in figure 2.8.

Another problem induced by JUNO’s size are muon bundles travelling nearly the same
direction. With a typical distance of 10m at the JUNO experiments depth the muon bundles
make up 17−20% of the muon events [23].

With a showering probability of 20% for a single muon and 30% for a muon bundle [23],
the muon background rejection is an important task.
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2.3.4 Vetostrategies for JUNO

In preceding experiments with small liquid scintillator detectors (e.g. KamLAND) compared
to JUNO this background was mostly rejected using a full detector veto of 2s.

Applying this kind of veto strategy to JUNO would cause a vanishing measurement time
due to the high muon event rate in JUNO.

With a larger background signal than the original signal in large liquid scintillator detectors
this demands inevitably for a new approach to veto the cosmogenic muons.

Current analyzation of veto strategies regarding the spallation isotope background in JUNO
imply a full detector veto for not successfully tracked muons with an energy E greater than a
threshold energy E f for a time t f . If a muon of energy E > Ec

8 is well tracked a cylindrical
veto of radius rc around the muons track is applied for a time tc. Muons below these threshold
energies are eventually not vetoed. It has been shown that the rejection efficiency can increase
if muons below an energy threshold are not vetoed [24]. This is due to the low isotope
production of muons with low energies. These parameters are optimized to create the best
possible background rejection for the different science goals of JUNO. For details see [24].

To provide the best possible tracking is an important task for the sensitivity to the mass
hierarchy and other physics goals in JUNO.

Although the imperfect tracking of single muons9 is mostly negligible, the current tracking
problems of muon bundles, as they have a significant occurence rate, is not [24].

The veto strategy for JUNO is therefore bound to the tracking ability of muons. A good
tracking of single muons and muon bundles is needed.

Furthermore the reconstruction of muon showers could decrease the vetoed detector vol-
ume. The shower probability and the probability of surpassing the whole detector rises with
the muon energy. A full track cylindrical veto whose radius rc is only determined by the
shower could therefore be replaced by a more suitable shape.

A new approach to a topological reconstruction which may solve these issues is presented
in section 3.4.

8Ec is in fact a second threshold energy for well tracked muons
9If 10−20% of all muon events are poorly tracked
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2.4 LENA-Detector

This section describes the proposed Low Energy Neutrino Astronomy (LENA) experiment
located in the Pyhäsalmi mine, Finland. Since simulations and reconstruction of muon events
was executed in the LENA detector geometry the experiment is of importance for this thesis.
The description will only include the detector (See figure 2.9) as the physics goals are almost
analogical with JUNO. For a detailed description see [32].

The LENA detector is a cylindrical shaped 50kton liquid scintillator detector of 96m height
and 14m radius with about 30000 12inch PMTs covering about 30% of the detector surface.

Similar to JUNO a Water-Cherenkov-detector is installed with about 2000 PMTs being able
to reconstruct the muon background and shield from the natural radioactivity. Furthermore a
muon-tracker is installed on the top.

Figure 2.9: Projection of LENA. Optical Module (OM): Optical Module (e.g. a PMT). Figure
from [47].

The liquid scintillator is LAB with a wavelength shifter and a luminophore to enhance the
light yield 10. The attenuation length of LAB is ∼ 20m and light yield about 10000 photons
per MeV [32].

103g/l PPO (luminophore) and 20mg/l bis-MSB (wavelength shifter) [49]
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methods for the LENA-Detector

This chapter briefly explains the simulation of muon events in LENA and then discusses the
new approach to topological track reconstruction in large volume liquid scintillator detec-
tors such as LENA or JUNO. Prior to this, basic effects regarding light in matter1 and light
detection with optical modules (PMTs) with respect to its simulation and reconstruction are
explained.

3.1 Scintillation process and light attenuation in

liquid scintillator

A liquid scintillator detector design is determined by the light production and its attenuation in
the scintillation medium. As these are the main factors regarding the reconstruction of muon
events, the focus lies onto the organic liquid scintillator LAB as design studies propose it for
the upcoming JUNO experiment [49].

3.1.1 Scintillation process

If a charged particle traverses a liquid scintillator detector, it ionizes the scintillation material
with a differential energy loss dE/dx [32]. The scintillation process is the conversion of
excitation energy, except heat, into light of a characteristic spectrum. Thus the excited atomic
states decay into stable states yielding isotropic distributed photons. This effect is called
luminescence.

The differential luminiscence dL/dx is called the scintillation light yield. In organic scintil-
lators about 3% of the deposited energy is converted into photons or one photon is created per
100eV [37]. In fact the differential luminescence does not depend linearly on the differential

1For this work Linear alkyl benzene (LAB)
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energy loss due to quenching effects and is semi-empirically described by Birks’ formula with
Birks constant kB.

dL
dx

= L0

dE
dx

1+ kBdE
dx

(3.1)

Furthermore the time distribution of the scintillation photons is of special interest for the
reconstruction. The decay of excited atomic states is a statistical process following an expo-
nential decay function. Given multiple excited states the time distribution is a weighted sum
of exponential decay functions [11]. Accordingly the probability density function Φphoton(t)

is given by

Φphoton(t,c) =
n

∑
i=1

wi

τi
e−

t−t0
τi ; t ≥ t0;

n

∑
i=1

wi = 1. (3.2)

Where c = {

(
τ1

w1

)
, ...,

(
τn

wn

)
} are the n components with weight wi and mean lifetimes τi.

Additionally t0 marks the time of excitation.
Moreover relativistic particles with β > βthreshold = 1/n(E) radiate Cherenkov light under

the Cherenkov angle cos(θc) = 1/βn(E) [27], which is the second source of light along with
scintillation light. Here β is the particles speed in vacuum speed of light units c0 and n(E) is
the energy dependent refractive index. As the Cherenkov light is making up only a few percent
of the produced light in liquid scintillators it is not further discussed (For detailed information
see [32]).

3.1.2 Light attenuation

Prior to a mediums attenuating effects on light it is important to note that the speed of light in
a medium is given by the group velocity of a wave package vg < c0 [27].

The attenuation of light in a medium is dominated by absorption and scattering. Important
effects are Rayleigh-scattering off bound electrons, Mie-scattering from scintillator impurities
as well as absorption and absorption with reemission2.

2The light is reemitted either in form of light visible to the detector, invisible light(infrared) or heat
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The probability density function Φdir for a photon directly surpassing the medium for a
distance x = |x−x0| is given by an exponetial law using the attenuation length L [48]:

Φdir(x,L) =
1
L

e−
x
L . (3.3)

The attenuation length L is given by the propagation lengths of the prior introduced effects:

1
L
=

1
LA

+
1
LS

;
1
LS

=
1

Lare
+

1
Lray

+
1

Lmie
. (3.4)

With the absorption length LA and the scattering length LS, which in equation 3.4 is deter-
mined by the absorption/re-emission length Lare, the Rayleigh scattering length Lray and the
Mie-scattering length Lmie.

The reduction of light reaching the photo detectors limits the scale of liquid scintillator de-
tectors. Furthermore, scattered light is false information as its not related to its origin anymore.
Therefore, it does carry information for the energy deposited, but has lost all its information
about the topology of the event. Thus these effects heavily affect the later introduced recon-
struction method 3.4. For LAB the attenuation length is ∼ 20m at a photon wavelength of
430nm [22].

3.2 Light detection with PMTs

This section covers critical effects regarding the light detection with photomultiplier tubes
(PMTs) shortly resuming [30, 32].

PMTs detect photons via the photoelectric effect, thus converting incoming photons into
electrons using a photocathode. These electrons get accelerated through an applied potential
to a dynode chain, where they release more electrons. Passing the dynode chain the electri-
cal current gets amplified by a factor typically between 103 and 108. Thus the sole photon
signal is transferred into a noticeable electrical signal. A schematic overview of a PMT with
photoelectric effect is given in figure 3.1.

Predominantly the light detection efficiency is reliant on the quantum efficiency of the
PMT3. The quantum efficiency is defined by the number of photoelectrons per photon hit
on the photocathode and depends on the photocathodes material, the materials temperature
and the wavelength of the photon.

3Assuming a nearly perfect capture efficiency. The capture efficiency is the amount of released photocathode
electrons hitting the dynode chain
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Photon

Primary PE

Transmission
photocathode

Focusing
electrode

Dynode chain

Figure 3.1: Overview over a photomultiplier tube.

Nonetheless the electrics of the PMTs harbour errors. These errors are given by the dark
current, pre- and after-pulses. Electrons which leave the photocathode without an incident
photon are called dark current. This is caused e.g. by thermally induced emission. Pre-pulses
are caused by photons hitting the dynode chain while after-pulses occur during an interaction
of an electron with remaining gas in the PMT. The created ion creates another delayed signal
when hitting the photocathode. Both effects can shift the signal time over several nanoseconds
(See figure 3.2).

These effects have to be taken into account when evaluating event data as photons may be
interpreted with false hit times or a dark current signal is taken for a photon hit.

Furthermore, the optical coverage of each PMTs is desired to be as large as possible. There-
fore light concentrators (Winston Cones) are used to reflect light from a larger area onto the
photocathode. Although they enhance the amount of detected light, they deteriorate the angu-
lar acceptance because above a critical incident angle δcrit the light gets reflected back into the
detector target. This effect is depicted in figure 3.3.
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(2)
(1)

(3)

Figure 3.2: Possible origins of pre-pulses due to a photon hitting the dynode chain directly (1)
and after pulses due to ionization (2) or elastic scattering of the primary photoelec-
tron (3). The purple lines represent photons, the blue lines represent photoelectrons
and the red line represents a positive Ion. Secondary photoelectrons are hinted by
dashed blue lines.

3.2.1 Angular acceptance

The angular acceptance is the probability of detecting a photon with respect to its incident
angle α . The incident angle is the angle between the photon track and the normal vector of
the PMTs photocathode. It is determined by the light concentrator of the PMT. Two possible
events of incident photons are shown in figure 3.3. The blue line depicts a photon with an
incident angle δ1 > δcrit and gets reflected back. The red line shows a photon with an incident
angle δ2 < δcrit . Thus the red lines photon hits the PMT.
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PMT

δ1
δ2

Concentrator
with reflective
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Figure 3.3: Visualization of a PMT with a lightconcentrator with a reflective surface. The
incident photon angles are calculated with respect to the PMT normal vector. Two
possible events of incident photons are shown. The blue line depicts a photon with
an incident angle δ1 > δcrit and gets reflected back. The red line shows a photon
with an incident angle δ2 < δcrit . Thus the red lines photon hits the PMT.

The transmission curve based on a Monte Carlo simulation for BOREXINO’s light concen-
trators can bee seen in figure 3.4.

Figure 3.4: Angular acceptance for a BOREXINO light concentrator with a reflectivity r =
0.86 and a critical angle of acceptance δcrit ∼ 44◦. Figure from [36]
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This angular acceptance is also part of the LENA simulation 3.3 as the same light concen-
trators were proposed for this experiment.

3.2.2 Hit probability

Although not important for the simulation itself the reconstruction of liquid scintillator detec-
tor events demand a hit probability. Assuming isotropic distribution of scintillation light the
possibility of the photon emitted in the solid angle α of a particular PMT located at rPMT is
the hit probability Φhit(x,α) from a spatial point x. For a visualization see figure 3.5.

PMT with
normal vector
and radius r

Spatial point x

Effective PMT surface

α

x

Point rPMT

Figure 3.5: Schematic of the hit probability. The sphere around the spatial point x with radius
x has a solid angle α to the at rPMT located PMT’s normal vector. The thick red
line represents the effective PMT surface the solid angle α . The quotient between
the effective PMT surface and the surface of the sphere with radius x is the hit
probability for isotropic emitted light from point x.

The hit probability can be approximated by the fraction of the detection surface of the PMT
with radius r perpendicular to the vector x− rPMT (Effective PMT surface) and the spherical
surface with radius x = |x− rPMT |. Thus the hit probability is given by

Φhit(x,α) =
r2 cos(α)

4x2 (3.5)

This approximation is a far-field approximation and only valid for x > r.
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3.3 LENA Simulation

The LENA Simulation is a simulation for Monte-Carlo events in the detector geometry of
LENA. It is written in C++, is based on the GEANT4 toolkit4 [5] and uses the ROOT frame-
work [8] for data storage. The LENA simulation especially enables the simulation of high
energy cosmogenic muons in a liquid scintillator detector. For this work, multi-GeV muons
were simulated to examine showering muons with the Wonsak Reconstruction introduced in
section 3.4.

This section focusses on the simulated detector geometry and the PMT distribution as well
as the general performance approximations in the LENA simulation. For a detailed description
see [32].

LENA has an upright cylindrical structure which is shown in figure 3.6. The innermost of
the detector is the actual neutrino target with the PMTs on its surface. The target has the height
htgt and radius rtgt. It is surrounded by a buffer where the support structure for the PMTs is
located. The buffer medium with height hbfr and radius rbfr is liquid scintillator but separated
from the target with an optical opaque foil. Target and Buffer are surrounded by a stainless
steel tank with height htnk and radius rtnk. A muon veto is installed on the cylinder barrel.
It consists of a water tank with height hv and radius rv surrounding the detector tank. On its
surface PMTs are installed forming a Water-Cherenkov-detector. The values for the different
radii and heights in the simulation can be looked up in table 3.1

Table 3.1: Parameters of the LENA detector in the LENA simulation from [32]

Parameter description Parameter Value

Target Radius rtgt 14.0m
Buffer radius rbfr 16.0m
Tank radius rtnk 16.3m
Veto radius rv 18.3m

Target height htgt 96.0m
Buffer height hbfr 100.0m
Tank height htnk 100.6m
Veto height hv 100.6m

4Version 4.9.6. Patch 02
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Figure 3.6: Visualization of the upright LENA detector with its geometric parameters listed in
table 3.1. The shell PMT-rings are successively shifted by the angle ∆Φ and are
depicted in black (even PMT-ring) and gray (odd PMT-ring).

Furthermore the PMT distribution around the target volume is of special interest. There is a
total number of NPMT PMTs distributed over the targets surface with NPMT,shell on the detector
barrel and the rest on the caps. The PMTs on the detector barrel form Nring rings of PMTs
with NPMT,ring PMTs per ring. Two adjacent rings are shifted by an angle of ∆Φ = π/NPMT,ring

which is half of the angle between two PMTs on the same ring. This creates even and odd PMT
rings, which are coloured black and gray respectively in figure 3.6. The distance between two
PMT rings on the cylinder barrel is ∆zrings. The cap PMTs are installed in concentric circles
around the center of the cap.
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3 Simulation- and reconstruction methods for the LENA-Detector

Furthermore, the radial distance of two adjacent cap PMT rings is ∆ϕrings. The designated
values can be seen in table 3.2.

Table 3.2: Parameters of the LENA detector PMTs in the LENA simulation from [32]

Parameter description Parameter Value

Total PMTs NPMT 30542
PMTs on shell NPMT,shell 26640
PMTs per ring NPMT,ring 144

Total PMT rings Nring 185

Distance of adjacent shell PMT rings ∆zrings 51.9cm
Radial distance of adjacent cap PMT rings ∆ϕrings 55.1cm

PMT diameter dPMT 51.0cm

3.3.1 Basic approximations used

The physical processes of a particle surpassing the LAB and photon interactions such as
absorption and Rayleigh scattering as well as the Cherenkov light process are covered in
GEANT4. Further coverage of isotropic scattering and a implementation of the scintillation
process is part of the LENA simulation software [32].

Simulation of muon events can be a time-consuming task. To shorten the simulation time
some approximations were made without distorting the outcome drastically. These approxi-
mations are taken from [32].

The buffer medium is simulated as liquid scintillator with a light yield L = 0MeV−1 to
mimic the opaque foil between the buffer and the target without loosing the properties of the
buffer regarding surpassing particles.

The Cherenkov light process was disregarded. This is justified by its share of a few percent
of the actual scintillation light. Furthermore, wavelength dependent effects were ignored.
Thus all photons travel with the phase velocity v = c0/n with the refractive index n of the
liquid scintillator. Therefore, the optical model is a crude approximation.

Additionally the light yield of the liquid scintillator located in the target is set to 2000MeV−1

which is about a fifth of the liquid scintillator mixture used in LENA. This is compensated by
setting the quantum efficiency of the PMTs from 20% to 100% as it is time consuming to
simulate photons which are discarded in 80% of the cases because the quantum efficiency is
20%.
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3.4 Wonsak-Reconstruction

The PMTs itself are simulated as flat disks. A Look-Up-Table (LUT) like in figure 3.4 is
used to determine if a photon is accepted. This costs less time than a complex simulation of
light concentrators in front of the PMT.

In the end the accepted photons at a particular PMT are stored with their hit-time t, which is
smeared with δ t from a normal distribution in the interval [0,∆T ] with ∆T = 1ns. This covers
up some of the effects regarding the uncertainties of PMTs, although pre- and after-pulses, as
well as the dark current, are ignored.

The simulated data does not cover all the physics of an muon event but is a good enough
approximation to test the reconstruction method in section 3.4.

3.4 Wonsak-Reconstruction

The Wonsak-Reconstruction is a new approach to topological event reconstruction in liquid
scintillator detectors. Whilst the algorithm was developed by Björn Wonsak [46], a general
object oriented C++ software package was implemented by Sebastian Lorenz [32], thus mak-
ing the algorithm highly adaptable to all kind of liquid scintillator detector geometries and
Monte-Carlo simulations. Currently the code is optimized for the LENA experiment but a
further optimization for the use in the JUNO experiment is in progress.

The following section will shortly describe the reconstruction algorithm based on [32].
With its spatial resolution of the energy loss dE/dx it can be used for a muon background

rejection in LSc detectors. Furthermore, a non full detector veto can be given for showering
muons or muon bundles, both highly related to the creation of cosmogenic radioisotopes. This
can be an exceptional tool for the upcoming JUNO experiment with a rate of 0.5s−1 for
showering muons and muon bundles in 10% of all muon events [7] (For detailed insight see
section 2.3.3).

The principle of the algorithm is to calculate the spatial number density of emitted photons.
Thus it gives access to a dE/dx estimation of the detector event.

The basic idea relies on two assumptions:

1. The particle traverses the detector on a straight track with speed of light c0.

2. A reference point rre f with a reference time tre f for the particle is known. The reference
point can be any point on the particle track. The input can be given by the particle vertex
using the backtracking algorithm [34].
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3 Simulation- and reconstruction methods for the LENA-Detector

In a liquid scintillator detector event the data is given by photon hits with a designated time
t(x) on a PMT with a designated position r j. This leads to equation 3.6.

t(x) = tre f +
|x− rre f |

c0
+
|r j−x|

c0
n

(3.6)

The time t(x) of a photon hit on the PMT with position r j is the reference time tre f plus
the time the particle travels from the reference point rre f to the point x in the detector volume
with speed of light c0 plus the time the photon travels from point x to the position r j of the
PMT with its speed c0

n in the liquid scintillator with refractive index n (See for a visualization
3.7). Therefore point x is the emission point of the photon.

Particle v =
c0 Photon v = vg

Point x

Reference point rre f PMT at point r j

Figure 3.7: Visualization of equation 3.6

The solution for the mathematical set of x of a single PMT-hit is a three dimensional drop-
shaped surface around the PMT (See 3.9 black line). Though this is the principle of the
reconstruction method the formula does not take into account the experimental environment.
The basic approach is the smearing of the drop shaped surface with the time distribution (See
figure 3.8) caused by the scintillation process 5 with a Gaussian of 1ns deviation representing
the time uncertainty of the PMTs (See 3.9 left).

5The excited state of the scintillator decays exponentially yielding a photon
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3.4 Wonsak-Reconstruction

Figure 3.8: Time distribution of the scintillator decay components with a gaussian of 1ns devi-
ation representing the uncertainty of the PMTs. Time t on the x-axis and emission
probability p on the y-axis.

Figure 3.9: left: Drop shaped surface of equation 3.6 (sharp black line) smeared with the time
distribution 3.8. right: left surface with taking hit and angular acceptance of the
PMT as well as the survival probability of a photon into account. Both figures are
unnormalized. Figure from [32].
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3 Simulation- and reconstruction methods for the LENA-Detector

Furthermore the photon detection probability for each PMT is dependent on the location x.
This is caused by the hit and angular acceptance of the particular PMT as well as the survival
probability of a propagating photon in the liquid scintillator detector. The effect of both time
and spatial deviations are shown in figure 3.9 right. This gives a scalar field Φ∗j,k(x) of photon
emission probability for a PMT j and a single photon hit k of PMT j. Being the information
of a sole detected photon, this scalar field has to fulfil the normalization condition.∫

VLSc

Φ
∗
j,k(x)dr = 1 (3.7)

The spatial number density of detected scintillation photon emissions is the superposition of
all hit PMTs j with all their hits k

Γ̂det(x) =
Nhit

PMT s

∑
j=1

Nhits, j

∑
k=1

Φ
∗
j,k(x). (3.8)

Note that this is the spatial number density of detected scintillation photon emissions Γ̂det . To
get the spatial number density of emitted scintillation photon emissions Γ̂em, Γ̂det is divided
by the local detection efficiency ε(x). ε(x) is the sum over all PMT detection probabilities
Pdet, j

6. Thus this results in

ε(x) =
NPMT

∑
j=1

Pdet, j(x). (3.9)

Unfortunately the computed Γ̂em is widely spread in the detector and only reflects the real
emitted light Γem if reduced to the true events topology.

To further enhance the Γ̂em of the reconstruction algorithm it is necessary to note that the
light emission is dependent on the events topology. Thus the light signals are correlated. This
can be utilized by making the reconstruction an iterative process. Therefore the prior iteration
is normalized and used as a probability mask for a further iteration. Typically 21 iterations
result in a good estimation of the spatial number density of emitted photons with a binning of
12.5cm. The probability mask serves as a pre reconstruction knowledge of the event by giving
a normalized probability field M(x) which is taken into account as a factor when calculating
the Φ∗j,k. Because this method is prone to self enhancement errors a binary probability mask

6including unhit PMTs
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3.4 Wonsak-Reconstruction

can be extracted from the probability field Mbinary(x) by setting a threshold a.

Mbinary(x) =

1 if Φ∗j,k ≥ a

0 else
(3.10)

Further implementations of a probability mask are explained in section 4.5.
Nonetheless there are still particular effects with need of improvement. It is still assumed

that all detected light is scintillation light following the rules of equation 3.6. Thus it neglects
the Cherenkov-light. Furthermore events produce a huge amount of scattered light. If scintil-
lation light is scattered it loses its timing-information due to its untrackable path through the
detector. Thus the photon does not satisfy equation 3.6. A statistical approach to distinguish
between direct and scattered light is discussed in section 4.3. In addition the computation time
of the algorithm is tremendous when iterating several times over high energy events. However
the algorithm can be sped up using parallelization with multiple CPUs or GPUs [41] and by
additional code optimization.

3.4.1 Raw Wonsak Reconstruction

Sometimes the Wonsak reconstruction algorithm leaks in robustness for multi-GeV muons
(See section 4.2). Another approach is to completely ignore normalizations in the reconstruc-
tion algorithm to estimate a event topology. In return the exact spatial energy distribution
information is lost. Only relative statements regarding the energy distribution can be done.
Thus a reconstruction is done with the drop shapes of 3.8 which are presented in the unnor-
malized form. This counteracts the overvaluation of near field of the PMTs. The result can be
utilized as a probability mask for a further reconstruction, if a topology can be extracted.
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3 Simulation- and reconstruction methods for the LENA-Detector

3.5 Other reconstruction methods for event

topologies

In this section other tracking and reconstruction methods are presented shortly as they are
indispensable for the construction of event topologies (See section 4.5). These methods are
very fast tools in comparison with the rough reconstruction of section 3.4.1.

3.5.1 The Opera target tracker

The Oscillation Project with Emulsion tRacking Apparatus (OPERA) target tracker [3] is
reused in the JUNO experiment and is a reliant source for the reconstruction of particle tracks
entering the detector from above. It consists of 6.86m long, 10.6mm thick and 26.3mm wide
scintillator strips which contain wavelength-shifting (WaveLength Shifting (WLS)) fibres to
enhance the light transport to their ends. The strips are readout with 64-channel photodetectors
at their ends. Thus 64 strips are merged into a bundle which is called a basic module [3]. A
schematic view of a scintillator strip can be seen in figure 3.10a.

(a) Scintillation strip with a TiO2 reflective shell
and a possible event reaction.

(b) A strip wall consisting out of 8 basic modules.

Figure 3.10: Schemes of a scintillation strip and the assembly of basic scintillation strip mod-
ules (scintillation strip wall) to access a xy-reconstruction of surpassing particles.
Both figures from [3].

These basic modules are assembled together as four, covering an area of 6.7× 6.7m2. In
addition these four-pieces are layered vertically and horizontally to provide an xy-information
with two consecutive four-pieces which are then called a tracker wall (See figure 3.10b). The
z-information is derived with consecutive tracker walls. The OPERA target tracker contains
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3.5 Other reconstruction methods for event topologies

62 tracker walls which cover 98.5% of the 6.7×6.7m2 area [3]. The reconstruction is based
on the one-dimensional spatial information of each strip provided by the signal times of both
strip ends. The whole target tracker provides enough three-dimensional points to fit the particle
track.

3.5.2 The Cherenkov detector

The outter water pool of JUNO is used as a Cherenkov detector. With 800 PMTs on the outer
barrel, 200 PMTs on the top and bottom cap as well as 800 PMTs on the central detectors
surface pointing away from the target, JUNOs Cherenkov detector allows a track resolution
within 1.5m for each spatial direction [4]. The principle is to use the only in a particular
angle θc around the particle track radiated Cherenkov light to reconstruct the Cherenkov-cone
around the particle. The track direction can be extracted using a maximum likelyhood fit
including the particles vertex, direction and impulse [44] which is necessary due to the multi
factor dependence of the Cherenkov cone.

3.5.3 First-Hit-Reconstruction in liquid scintillator detectors

A similar approach to 3.5.2 can be done with the first photon surfaces of a particle in liquid
scintillator. A sketch of the first photon surfaces is shown in figure 3.11. The envelope of
all first photon surfaces can be reconstructed in the detector with the PMTs first hits. Due to
the enevelope’s asymetric shape the track aswell as the direction can be well calculated. A
likelyhood fit can be made based on the particles vertex and direction aswell as the start time
and kinetic energy as with the Cherenkov light [26].

Figure 3.11: The black arrow indicates the particle’s track. The dashed blue lines represent the
first photon surfaces and the red line is the envelope of all first photon surfaces.
Figure from [26].
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4 Showering muons in liquid
scintillator detectors

The background of cosmogenic muons leads to a production of cosmogenic isotopes which
yield the same coincidence as the anti electron neutrino, which is to be detected in the JUNO
experiment. The veto strategies in section 2.3.3 depend on the reconstruction of these muons,
especially showering muons and muon bundles. The goal of this thesis is to examine shower-
ing muons with the Wonsak reconstruction algorithm and proof the ability to reconstruct those
events, providing a solid base for an efficient muon veto. In this chapter the simulation of
muons which most likely produce a muon shower is described in section 4.1. The problematic
of high energy muons reconstructed with the Wonsak reconstruction algorithm is explained
in section 4.2. The further improvements of the algorithm regarding the probability mask in
section 4.5 and a statistical consideration of scattered light in section 4.3, which were part of
this work, are presented afterwards. Finally, the results of the improved reconstruction algo-
rithm are outlined in section 4.7. The examination of showering muon events regarding the
possibility to locate the muon shower is presented in section 4.8.

4.1 Creating showering muons with LENA-Simulation

The LENA-Simulation (see section 3.3) uses the command line interface and can be controlled
by a macro in the batch mode [35].

The utilized macro setup is divided into three parts. The physics.mac macro contains the
settings for the physics processes. Furthermore the geometry.mac macro describes the detector
geometry and the PMT distribution on the target volume. Lastly the template.mac macro
combines the former macros and sets the file specifications like the filename and the quantity
of successive simulated events.

The macros can be found in appendix 6.1 with batch comment lines giving a short introduc-
tion to the commands, as not all of them will be covered in this chapter.

The goal was to maximize the possibility for the muon to create a shower. This can be done
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4.1 Creating showering muons with LENA-Simulation

in the simulation by maximizing the target volume surpassed by the muon by adjusting its
track. Furthermore, the muon needs enough energy to create a shower at any time in the target
volume. Therefore, muons with enough energy to surpass the whole detector on the longest
possible way are preferred to create a showering muon event with the LENA simulation. Thus,
the simulated muons start at the edge of the upper detector cap. The position of the particle
gun xgun (start point of the muon) is

xgun =

 1000
830

4600

 . (4.1)

The direction points through the origin of the coordinate system located in the detector
center onto the opposing side of the detector. The vector for the gun direction vgun(muons
direction) therefore is

vgun =

 −0.209
−0.174
−0.962

 . (4.2)

Finally the energy has to be large enough to guarantee a full transition through the detector
on this path. According to section 2.3.3 the differential energy loss dE/dx|µ through the
ionisation of a muon is 1.43MeV/cm (minimal ionisation).

Thus, the needed energy threshold Et calculates to

Et = 2 · |xgun| ·dE/dx|µ = 13680MeV≈ 14GeV. (4.3)

In fact, a muon needs an initial energy to trigger a shower. Therefore high energies are
needed. To compensate between the probability of creating a shower and the duration of the
simulation all energies were chosen in the interval [20,40]GeV. This rough estimation cre-
ated enough showering muon events. Therefore, the threshold energy Et is just the minimum
energy needed.

An event with these parameters is shown with the LENA event display in figure 4.1.
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4 Showering muons in liquid scintillator detectors

Figure 4.1: LENA event display visualizing the photon hits on the PMTs from a muon with
kinetic energy Ekin = 40GeV, start position xgun from equation 4.1 and direction
vgun from equation 4.2. PMTs with photon hits are colourized. The colours repre-
sent the time of flight corrected hit times with respect to the barycenter . The color
code ranges between blue ∼ 0ns and red ∼ 400ns. The total area of the PMT
panels represents the charge of the PMTs which is the quantity of detected photon
hits. The event display source code originates from [26].

After the simulation the data gets processed furthermore using the Dataprocessing algo-
rithm. The general idea is to put the data into a more suitable format with all photon hits
assigned to the PMTs they encountered [26] . This processed format is accepted as input for
the Wonsak reconstruction algorithm.
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4.2 Problems of high energy muon reconstruction

4.2 Problems of high energy muon reconstruction

The scalar field of spatial density of deposited energy Γem computed by the Wonsak recon-
struction algorithm is stored in a three-dimensional histogram with values of double precision.
The software package developed by Sebastian Lorenz [32] produces an output for contained
muons1, which is consistent with the Monte Carlo (MC)-Data. A reconstructed muon can be
seen in figure 4.2.

Figure 4.2: Reconstruction of a 3GeV muon event starting and ending in the detector volume.
Thus speaking of a contained event. The reconstruction was done with one single
iteration. Thus the spatial density of emitted photons is widely spread. Nonethe-
less this is a good approximation of the event’s topology. The red line indicates
the primary muon and the black lines the secondary particles (mostly electrons due
ionization) of the MC-Data corresponding to the event.

Although the reconstruction works well for these events especially if they are contained, the
output shows signs of weakness when the muons pass areas near the PMTs. A 20GeV muon
surpassing the detector in the xy-plane is depicted in figure 4.3. These events were chosen to
test the new approach of the reconstruction algorithm in section 4.7.

1The full track of the muon is in the target volume
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4 Showering muons in liquid scintillator detectors

Figure 4.3: Reconstruction of a 20GeV muon surpassing the detector in the xy-plane. The
result is distorted by the energy deposition near the PMTs.

The effects of the spatial energy density being drawn to the targets exterior surface (or
to the PMTs) can be explained with scattered light. Scattered light occurs through different
effects explained in section 3.1.2. In the following sections light which causes a PMT signal
will be referred to as scattered or direct light when it reaches the PMT with or without a
scattering process respectively. Multi-GeV energy events yield huge amounts of light. Taken
the simulated light yield of L = 2000/MeV and the energy loss Et = 13680MeV of a muon
surpassing the whole detector due to ionization calculated in equation 4.3, the amount of
produced photons nphotons is

nphotons = L ·Et = 27360000. (4.4)

Note that the quantum efficiency of the PMTs is set to 100% to compensate the five times
lower light yield. In addition a possible shower, much more likely in the GeV muon energy
range, would deposit another 1− 10GeV [23] of showering energy. The near field of the
PMTs enhances these problems drastically, because it gets huge amounts of light. Only a few
PMTs near the entry point and exit point of the muon distort the result of the reconstruction
algorithm in the first iteration (See figure 4.3). Another problem regarding the reconstruction
is the scattered light, which causes a deterioration of the reconstructed spatial number density
of emitted photons due to false information regarding equation (3.6). The time the photon hit
the PMT and its origin are not connected for scattered light. In the far field, scattered light

42



4.2 Problems of high energy muon reconstruction

leads to a widening of the topology of the reconstruction result. Scattered light originating
from the far field does not follow a special pattern. Therefore, a drastic change of the topology
of the event is not caused. However, the near field yields more drastic problems regarding
scattered light. A possible event could pass the detector between two PMTs in a way that one
PMT gets much direct light and the other PMT does not (see figure 4.4). Actually both PMTs
see light. One mostly due to direct light and one due to scattering. Thus one PMT gets huge
amounts of false information and together with other PMTs deteriorates the reconstruction
outcome.
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on PMT 1

Figure 4.4: A charged particle enters the detector target volume (orange) between two PMTs
in the buffer volume (light orange). The three PMTs are PMT 1,2 and 3 seen from
the top. Whilst the PMT 2 and 3 get much direct light, the incident photon front
hits PMT 1 under an angle δ < δmax < δcrit ≈ 48◦ an therefore sees close to zero
direct light, although getting a huge amount of photon hits due to scattering.

Thus, high energy muons demand another approach to distinguish scintillation light based
onto their probability to be scattered. A statistical approach within the Wonsak Reconstruction
and its implementation in the reconstruction framework is discussed in the following section
4.3.
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4 Showering muons in liquid scintillator detectors

4.3 Correcting scattered light

The Wonsak reconstruction algorithm uses all photon hits as equal information, but some
photons are statistically less likely to be direct light.

The basic idea demands some preknowledge:

1. The events topology is roughly known. The algorithm demands a probability mask.

2. The probabilities of scattered light pscat(t)|i,xem and direct light pdir(t)|i,xem for all PMTs
(index i) and time t after emission time t0 = 0 from all possible emission points xem in
the detector are known.

For muon events the particle track can be provided by a former reconstruction of a muon
tracker, the Cherenkov veto or a robust reconstruction with the same algorithm which are
covered in section 3.5. A possible way to get access to an approximate topology based on
the track of the muon, which is called the probability mask in the Wonsak reconstruction, is
covered in section 4.5.

The probabilities for scattered and direct light can be simulated and stored into LUTs2. The
possible emission points are reduced to a reasonable binning to compromise simulation time
and data storage. Furthermore the symmetric detector geometry can be used as an advantage.

The probability for direct light is a probability density function Φphoton(t,c) of the photon
emission of the detector’s target material calculated with equation (3.2) delayed by the time
of flight ttof from emission point xem multiplied with the probability of reaching the PMT i

from emission point xem. The probability of reaching a PMT is calculated as a product of the
attenuation probability Φdir(x,L) (see subsection 3.1.2), the angular acceptance Φaa(α) (see
subsection 3.2.1) and the hit probability Φhit(x) (see subsection 3.2.2). Distance x, incident
angle α as well as tto f can be derived from emission point xem and PMT i. Furthermore the
components c and the attenuation length L can be precisely measured for the scintillator and
are considered as constants. Thus the direct light probability pdir(t)|i,xem can be expressed
using

pdir(t)|i,xem = Φphoton(t− ttof) ·Φdir(x) ·Φaa(α) ·Φhit(x,α). (4.5)

The probability for scattered light needs to be simulated. The general idea is to emit a large
amount of photons isotropically at an emission point xem and calculate their way through the
detector. Scattered photons get tagged as scattered upon their first scattering process. The
probability of scattered light from an emission point xem is the number of scattered photons

2Look up tables (LUTs) are data packets which contain data which is independent of the event
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4.3 Correcting scattered light

np,scat(t)|i,xem detected on a PMT i divided by all detected photons np(t)|i,xem on a PMT for a
time interval ta < t < ta +∆t, where ∆t is the bin size. Thus the scattered light probability can
be written as

pscat(ta)|i,xem =
np,scat(ta)|i,xem

np(ta)|i,xem

for ta < t < ta +∆t (4.6)

For comparability the binning of the direct light probability LUT is set the same as the
scattered light LUTs binning.

The scattered light probability is not given by pscat = 1− pdir because direct light from
a spatial emission point xem does not imply the scattered light being from the same point
xem. Figure 4.5 depicts the fact that given a topology there are possible origins for direct
light calculated by equation 3.6 (black line) and possible origins for scattered light (red area).
Note that the whole area in the drop shape is a possible origin for scattered light, but the
gray topology reduces this volume to the red area. Two exemplary photons are drawn for a
direct hit (black arrow) and a scattered hit (dashed arrow) with the same hit time. Therefore
the emission points do not coincide and thus light being scattered or not does not follow a
binomial distribution. Thus an statistical estimation over all emission points in the topology is
needed.

These probabilities for direct and scattered light are necessary to compute a total direct light
probability. The statistical approach evaluates the possibility of the photon hit being correlated
to the given topology. This is called the total direct light probability Ptot,k of a photon hit k.

The scattered light algorithm (SLA) calculates the direct light probability pdir, j and scat-
tered light probability pscat, j for each unique hit k for each bin j in the event topology with
respect to the corresponding PMT. These probabilities are added up and form the total direct
light probability Ptot,k for the photon hit k with equation (4.7).

Ptot,k =
∑ j pdir, j

∑ j pdir, j +∑ j pscat, j
(4.7)

Thus the algorithm computes the possibility of the photon hit correlated directly with the
event’s topology. This information is stored and the further contribution of the photon k is
weighted with its new probability of being direct light Ptot,k.
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4 Showering muons in liquid scintillator detectors

Figure 4.5: Visualization of the scattered light algorithm. The xy-projection of the LENA de-
tector with the target volume (orange) and a PMT (light gray) in the buffer volume
(light orange) with an event topology (gray). The possible origins for a hit calcu-
lated with equation 3.6 on the PMT is shown by the black curve around the PMT.
The red area marks the possible origins for scattered light. Although the whole
area in the drop shape is a possible origin for scattered light, the topology reduces
it to the red area. Two exemplary photons are drawn for a direct hit (black arrow)
and a scattered hit (dashed arrow) with the same hit time.

The topology is given by the probability mask in the reconstruction algorithm. The prob-
ability mask is a scalar field, which represents an in advance topology of the event. If the
probability mask is binary, equation 4.7 can be applied. If the probability mask is not binary
and thus already yields information of the spatial number density of emitted photons additional
to the topology, equation 4.7 needs a correction. This is done by including the probability M j

of the bin j of the probability mask in equation 4.7, thus giving equation 4.8.

Ptot,k =
∑ j M j pdir, j

∑ j M j pdir, j +∑ j M j pscat, j
(4.8)
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4.4 Implementation of the scattered light algorithm

for LENA

This section covers the implementation of the direct and scattered light LUTs as well as the
algorithm itself into the reconstruction framework.

4.4.1 Scattered light LUTS

The scattered light LUTs were simulated in circular segments on various heights in the upper
half of the detector. Computing LUTs with high statistics is a time consuming task. Therefore
much effort lies on the reduction of the amount of the emission points of the LUT, which are
spatial points in the detector volume simulated as an origin of photons. All following reduc-
tions regarding the emission points are justified by the symmetry of the detector. The general
idea is to find a corresponding LUT emission point for every bin (spatial, cubic segment of the
detector volume) in the SLA and shift the PMT distribution in a way that the bin overlaps the
emission point in the LUT. The consequence is a shifting of all PMT IDs. Thus a transforma-
tion rule is derived from the relative position of the bin to the emission point, which is then
applied to all PMT IDs.

First the focus for the reasoning of the LUTs lies on a particular PMT ring, followed by the
z-coordinate in the detector.

The circular segments have an angle of αseg = 1.25◦ and are placed to the right of a PMT
in the ring. For a consistent numbering of the PMT ring, the interval [0,NPMT,ring] is used.
The reasoning behind this choice is the PMT distribution being invariant to a rotation of an
angle δ = n ·Φ with n being an non-negative integer. This is due to the fact that one PMT-ring
in the LENA detector has NPMT,ring = 144 PMTs per ring, thus giving φ = 360◦/144 = 2.5◦.
Figure 4.6 depicts the general idea behind a transformation in a PMT ring. The red bin near
PMT i corresponds to the emission point (yellow star) relative to PMT 0. Therefore the PMT
ring gets turned until PMT i overlaps PMT 0. This is expressed by the simple equation 4.9. j

denotes the PMTs in the interval [0,NPMT,ring− 1]. If the equation goes out of bounds of the
interval, 144 is added.

j′ = j− i (4.9)
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The blue bin is on the left side of PMT i. After the ring gets turned, the ring has to be
inverted to match the blue bin and the emission point. This means the nth order right and left
to the PMT 0 change places for all orders. This is described by equation 4.10.

j′ = i− j (4.10)

i

0

1

143

i-1i+1

Figure 4.6: This figure depicts the transformation within a PMT ring. The red bin is to the
right of the PMT ID i and matches the right oriented LUT at PMT ID 0 with its
emission point (yellow star). Thus all PMT IDs get transformed with equation 4.9.
The blue bin is to the left of PMT ID i and does not match the emission point.
Therfore all PMT IDs get transformed with equation 4.10.

The final LUT ring consists out of nem = 81 emission points for 27 radial bins of 50cm and
3 circular segment fractions of 0.5◦.

Secondly, the z-distribution of the LUT rings is of interest. For this the PMT ring IDs
are used as they quantize the z-axis. The LENA detector has Nring PMT rings in the interval
[0,Nring−1]. The first approach is to neglect the lower half of the cylindrical detector because
it is symmetric to an area perpendicular to its z-axis. The central PMT ring has the ring ID
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92. Thus the rings which need a LUT are of the ID k ≥ 92. The rings with an ID k < 92 are
assigned to their counterpart on the upper half following the transformation in equation (4.11).

k′ = 184− k (4.11)

With this assignment the ring IDs of all PMT rings change too following equation (4.11).
This effectively is the mirroring of the detector on the xy-area located at the center of the
detector.

Furthermore, the number of LUTs for the PMT rings of the upper detector half can be
reduced, because no drastic changes were found between two LUTs of consecutive PMT rings.
If the PMT ring does not have a LUT, the nearest ring ID having a LUT is chosen and the
distance d in the unit of PMT rings is calculated. This is done after transformation (4.11) for
ring IDs k < 92. Thus the additional transformation rule is given by equation (4.12) [0,Nring−
1].

k′′ = k′+d (4.12)

The problem occurring during the use of transformation rule (4.12) is the ring ID going out
of bounds of the interval [0,Nring− 1]. To account for this relative distances are used. The
principle is the invariance of PMT rings with equal relative distances. A simple example of
the upper half of the detector can be seen in figure 4.7. The red bin at ring ID b gets assigned
to the LUT at ring ID b+d with the distance d in units of PMT rings between them. The ID
k′ can be transformed using equation (4.12). Thus the ring at ID k′ gets assigned to the LUT
values of ID k′′. This does not work for ring ID l, which would exceed the maximum ring ID.
Therefore another ring ID below with the same distance to the LUT ID b+d is chosen.

k′′′ = bLUT − (k′′−bLUT ), (4.13)

with bLUT = b+ d representing the ring ID of the LUT and k′′ = l + d in the example of
figure 4.7.
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ID: k′

ID: k′′ = k′+d

Bin at ID: b

LUT at ID: b+d

ID: l

ID: l +d > 184

l−b

l−b

alternative ID for l +d

Figure 4.7: Visualisation of the ring ID transformations in the upper detector half. The bin at
ring ID b gets assigned to the LUT at ring ID b+d with the distance d to each other.
The transformation for ring ID k follows equation 4.12. For the transformation of
the ring ID an alternative ring ID needs to be found, since ring ID l + d does not
exist.

Another problem is the phase-shift of two adjacent PMT rings of ∆Φ = 1.25◦. Therefore
the final z-distribution of LUTs consists out of 10 triple-packs. The 10 triple-packs are evenly
distributed over the upper detector half. Each triple-pack is simulated on two PMT rings, one
being odd and one being even. Two on the height of both PMT rings and one in the middle of
both PMT rings.

Thus another rule has to determine if the bin is located on an even or odd PMT ring ore in
the middle of two adjacent PMT rings. This finally determines the scattered light LUT and the
transformation of the PMT distribution for each bin in the detector target volume.

An exemplary scattered light LUT for z = 0.0cm, r = 0.0cm and the angle zero with
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nph = 10000000 simulated photons can be seen in figure 4.8. The two dimensional histogram
consists out of the scattered light probability. The PMT ID is found on the x-axis and the time
t in ns on the y-axis. The palette ranges from 0 to 100 because the scattered light probability
times nphs is stored. The transition on PMT ID 26640 is caused by the transition from the
PMTs on the cylinder barrel to the PMTs of the detectors caps.

Figure 4.8: Scattered light LUT for z = 0.0cm, r = 0.0cm and the angle zero. The PMT IDs
are shown on the x-axis with the time of flight corrected hit time on the y-axis.
The pallete shows the scattered light probability times the number of simulated
photons (nph = 10000000). The transition on PMT ID 26640 is caused by the
transition from the PMTs on the cylinder barrel to the PMTs of the detectors caps.

A transformation rule for the cap PMTs is yet to be made. All reconstructions done with
the SLA do not use the cap PMTs.

4.4.2 Direct light LUTs

The direct light LUT without a time dependency was already implemented in the reconstruc-
tion algorithm. Thus the direct light probability for a spatial point in the detector volume for a
particular PMT is available. The LUT was reused and the time dependency was implemented
following two approaches. The first approach was a cut on the time of flight corrected hit time
tto f .
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This is the actual hit time th on the PMT at position r j minus the propagation time of a
particle to a spatial point x with speed of light and the propagation time of the photon from
the spatial point to the PMT with the speed of light in the scintillator medium.

tto f = th−
x− r

c0
−

r j−x
c/n

(4.14)

r denotes the reference point (here: vertex of the particle) and n denotes the refraction index
of the scintillator.

If the time of flight corrected hit time exceeded 0.5ns, the direct light probability of the
hit seen from a spatial point was set to zero. The correction of the time of flight was also
done in the scattered light LUTs. The bin structure of the reconstruction and the structure
of the emission points in the LUTs are distinct. Hence, the time of flight to the PMT from
the bin center and emission point are not the same. To account for these small differences,
the value for the bin is looked up in the nearest LUT at the time of flight corrected hit time
computed from the bin center. This yields the best result given the uncertainties of the LUT
structure. The second approach was to weigh the direct light probability from a spatial point
with the normalized time distribution of the scintillator decay components and electronics.
The histogram follows the function of figure 3.8 and can be seen in figure 4.9. Consequently
the hits get a better rating for their direct light probability.

Figure 4.9: Histogram of the photon time distribution in figure 3.8.
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Furthermore, the cut of 0.5ns is not reasonable for large bins, because the direct light prob-
ability gets highly influenced by binning effects. The light travels roughly 20cm in 1ns. If
the bin size is set to 100×100×100cm3 the binning itself discards a lot of direct light proba-
bilities possibly true for the event. Although, this problem is not essentially fixed by the time
distribution, it improves the algorithm. In addition randomized bin centres were computed
based on appendix 6.2.2 to decrease binning effects, which occur when a fixed structure gets
used for an actually continuous effect.

4.4.3 The algorithm

The intuitive way of implementing the SLA would be a loop over all hits and a direct determi-
nation of the probabilities for scattered and direct light. Unfortunately the LUTs are bound to
the bins of the reconstruction grid, thus the time to load every LUT for each hit and convert ev-
ery bin for each hit would be time consuming. The solution is an assignment of every bin to its
corresponding LUT. Therefore the algorithm loops over all LUTs utilized and then processes
every bin assigned to it. Thus the total direct light probability of equation (4.7) does not get
computed at a stride. In fact the sums of direct and scattered light probability are calculated
and at the end of the loop assigned to each hit following equation (4.7).

The current state of the SLA increases the already inadequate computation time of the
reconstruction algorithm. One approach would be to detach the assignment of the bin to the
LUT and form LUTs for all detector bins. This would greatly enlarge the memory usage, but
could yield easier forms of an implementation, with less computation time due to less steps
of calculation. Furthermore, the algorithm is parallelisable. The best approach would be an
analytical ansatz as implemented for the direct light algorithm. This is yet to be achieved and
a highly non trivial task.

4.5 Improvement of the probability mask

The Wonsak reconstruction algorithm is time consuming. To veto muon events only a rough
topology with its spatial energy distribution is needed. It has already been stated that the
algorithm encounters problems with scattered light in multi GeV muon event ranges. One
simple solution is to get a probability mask with fast reconstruction algorithms (See section
3.5), perform the scattered light algorithm and start the reconstruction algorithm afterwards.
This process saves the iterations of the reconstruction algorithm to find the topology of the
event and produces an acceptable result for muon vetos.
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The probability mask is a scalar field representing the events topology within the detector
geometry. It does not stand for the spatial number density of emitted photons. The utilization
is to provide a topology for the reconstruction algorithm. Therefore, the probability mask
reduces the to be reconstructed volume. Only if the number density of emitted photons is
calculated for the topology of the event, an estimation of the spatial deposited energy can be
made. Thus the reconstruction algorithm is an iterative process.

Two approaches were acquired. One uses the information of the track of the primary par-
ticle of the event. The other further derives a rough energy distribution over the z-axis of
the detector from the photon hit distribution over the z-axis to weight the result of the first
approach.

The input from other reconstruction algorithms is a plain knowledge of the particles track.
For multi-GeV muons the probability of traversing the detector completely is realistic (See
equation 4.3). The probability mask is therefore assumed to be a cylinder around the track.
Using appendix 6.2.1 to calculate the distance between a point x and a line in three dimensions
the probability mask can be derived from a scalar function f (dt(x)) of the distance dt(x) to
the particles track. The shape of the function f (dt(x)) should respect the vertical extent of the
track of the muon. For this instance the function was set to 1 for the interval [0,350]cm of the
vertical distance to the track. An exponential decay over the interval (350,450]cm, as well
as the value 0 for distances exceeding 450cm was further applied to the function f (dt(x)).
Thus f (dt(x)) follows equation 4.15 and satisfies the 9Li distribution of figure 2.7b around the
track.

f (dt(x)) =


1 for dt ∈ [0,350]cm

exp(−dt−350cm
10000cm ) for dt ∈ (350,450]

0 else

(4.15)

This probability mask minimizes the volume for the reconstruction algorithm without ne-
glecting possible origins of background events to a significance level beyond 99% [24] (See
figure 2.7b).
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Although the exponential decay function is a better fit to the actual event, binary probability
masks following the function fbin(dt(x)) of equation (4.16) where created, because of the
negative binning effect of high edge length bins with a decay function exponentially decaying
from one to zero over an interval with absolute length lower than the bins edge length.

fbin(dt(x)) =

1 for dt ∈ [0,450]cm

0 else
(4.16)

Both functions are plotted over the interval [0,600]cm in figure 4.10a and 4.10b.

(a) Plot of the scalar function of equation 4.15. (b) Plot of the scalar function of equation 4.16.

Figure 4.10: Scalar functions used to determine the value of the probability mask perpendicu-
lar to the main particles track.

A further possibility to enhance the probability mask is to weight the detector’s z-axis of the
event. Especially for LENA the photon hit distribution over the PMT-rings describes the rough
energy distribution of mostly vertical events. This was found with a qualitative examination
of 10 events with muons of 40GeV surpassing the detector mostly vertically. This can be seen
in figure 4.11 with the photon hit distribution over the z-axis (figure 4.11a) and the MC-data
of deposited energy in form of secondary particles over the z-axis (figure 4.11b).
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(a) Distribution of the photon hits over the PMTs.
Each PMT ID is dereferenced to its position on
the detectors z-axis starting from zero at the bot-
tom.

(b) Distribution of the kinetic energy of the sec-
ondary particles based on the MC-Truth data.
The kinetic energy at the vertex of the secondary
particle is projected on the z-axis.

Figure 4.11: Comparison between the distribution of photon hits and the energy of secondary
particles based on the MC data over the z-axis. The distribution of photon hits
over the z-axis is highly correlated to the deposited energy.

If a particle traverses the LENA detector all rings of PMTs get approximately the same
amount of light regardless of the position of the particle in the particular ring. Thus the amount
of detected photons in one PMT ring is approximately independent of the point of emission
in the PMT ring. A basic simulation of this effect is shown in figure 4.12. The average direct
light probability in one PMT ring was calculated for over a million emission points. The
average direct light probability from one emission point is the normalized sum of the direct
light probabilities of 144 PMT simulated around the ring.

The two dimensional histogram holds the average direct light probability calculated by
equation 3.3 over all PMTs in one ring for a point (x,y). The average direct light probability
differs slightly in the inner volume with a total deviation of 8% from the innermost to the
outermost edge. Thus the approximation that all PMT rings get the same amount of light
regardless of the origin of the light within the PMT ring is acceptable.

This does not apply to the PMT rings near the caps of the LENA detector. These PMT rings
get less light since the target volume nearby with a non vanishing direct light probability is
lesser than a PMT ring in the middle. This effect was disregarded for this probability mask.
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Figure 4.12: Simulation of the average direct light probability in one xy-projected ring in the
LENA detector. The PMTs are evenly distributed over the outer circle (transition
from blue to yellow). The value for each bin is the average direct light probability
of all PMTs from the bin center.

The photon hit distribution is naturally binned by the distance between two PMT rings.
This histogram can be fit and provides another scalar function g(z(x)) of the z-coordinate of
the point x . Thus the total scalar field Φ(x) for the probability mask is given by

Φ(x) = f (dt(x)) ·g(z(x)) (4.17)

The implementation of a z-modulation in JUNO is more complex due to its spheric sym-
metry. Furthermore the modulation would rather be a modulation along the particle’s track.
Therefore the detector is divided into circles of PMTs perpendicular to the track. To maintain
equality the changing distance and quantity of the PMTs in each ring has to be taken into
account. Furthermore the angular acceptance changes for each perpendicular ring.

The probability mask with a z-modulation can be seen in figure 4.13b. The weighting for
the z-axis is shown in figure 4.11a. For comparability the probability mask without this z-
modulation is shown in figure 4.13a.
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(a) Probability mask using the z-modulation of figure 4.11a.

(b) Plain probability mask around the track of the muon.

Figure 4.13: Probability masks created around the track of a 40GeV muon surpassing the
detector with the input values suggested in section 4.1. The binary probability
mask function of equation 4.16 was applied. Both probability masks are not
normalized.
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4.6 Removing critical PMTs

Another approach tested in this bachelor thesis is the deliberate removing of PMTs which may
hold corrupt information. Section 4.2 already covered the critical behaviour of PMTs near the
track regarding scattered light, which is explicitly shown in figure 4.4. Furthermore, the SLA
is problematic in these areas because of the binning effects. On the one hand the binning could
be set to a small edge length of about 10cm to enhance the SLA, but on the other hand this
would cause a massive increase of computation time. Therefore this is only an option if the
reconstruction algorithm is foreseen to do a full run onto the event. A more applied approach
would be the removal of the PMTs near the track of the muon. Thus the SLA has not to be
performed or can be done with a wider binning, because the PMTs where it is sentenced to
fail are disregarded. In addition the simulation is able to process huge amounts of incident
photons at a time, while a real PMT would go in saturation and lose its information. Therefore
these PMTs would be removed from any reconstruction approach anyway.

The implementation in the reconstruction can be done by two approaches. The first one is
to calculate if a particular PMT is near the track of the muon within a threshold distance rt ,
which was set to 300cm based on empirical knowledge. The other approach would be the
removal of PMTs with a number of incident photons above a threshold number np,t

3. For this
work, the first approach was applied.

4.7 Improved reconstruction results

Section 4.2 already pointed out the problems the reconstruction algorithm encounters during
the reconstruction of multi-GeV muon events especially in the near field of the PMTs.

Recapitulating, the SLA with a randomized binning was implemented to solve these prob-
lems. The probability masks were a necessity to run the SLA. To ensure the success of the
reconstruction in the near field, PMTs near the muon’s entry and exit point had the possibility
to be disregarded.

These three options were tested and qualitatively evaluated in this section with a 20GeV
muon surpassing the LENA detector in the xy-plane located in the center of the detector. The
entry point of the particle is xen = (1400,0,0)cm and the exit point is xex = (−1400,0,0) .
20GeV is more than enough to surpass the diameter of 28m of the detector. The xy-plane was
chosen to validate the SLA with PMTs in the near field, as the cap PMTs had no transformation
rules for the LUTs of the SLA. The particles created according to the MC-data are printed on

3In an actual experiment one would determine the PMTs which went into saturation
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top of the projections of the reconstruction algorithm. It is used as an reference for the events
energy deposition. It does not stand for the exact number of created photons but can be utilized
as a good approximation for the number of created photons.

This analysis is exemplary to underline the problems occurring in the near field. For the far
field a good result of the spatial number density of emitted photons was found for 10 40GeV
muons surpassing the detector with the values calculated in section 4.1. The near field was not
tested for these events because the cap PMTs had no transformation rules (see section 4.4.1).

The main goal is to create the best possible first iteration with bins of 100cm edge length
of the reconstruction algorithm, as only a rough spatial number density of emitted photons is
needed to identify a showering muon. The reconstruction algorithm has been proven to work
with multi-GeV muons. Still some iterations are necessary to create a topology for the event.
Therefore, this approach saves a lot of computation time of the reconstruction algorithm. The
result of the iterating process is stated with the ninth iteration. These iterations are typically
needed to find a topology. The ninth iteration contains bins of 50cm edge length and got
refined. Refining means the target volume further computed in the reconstruction algorithm
got reduced to the events topology. The reason these plots are evaluated quantitatively is the
early stage of this approach with the reconstruction algorithm. It has been proven that the
eye of the observer is a valuable tool to evaluate the result of the reconstruction algorithm.
Nonetheless a quantitative test of theses methods is pending.

4.7.1 Result of the reconstruction

The first look belongs to the reconstruction algorithm without the enhanced options summa-
rized before, which can be seen in figure 4.14. Although the track of the muon is estimated
well for the first reconstruction, the entry and exit point get an overestimation of spatial num-
ber density of emitted photons, which does not correspond to the MC-data which is drawn
with the black lines corresponding to the secondary particles created and the red line corre-
sponding to the primary muon. Although the spatial number density of emitted photons is
somewhat larger near the shower located at x = (650,0,0)cm, the reconstruction algorithm
will need further iteration steps, due to the falseness of the probability mask, which gets cre-
ated by normalizing this iteration step. The ninth iteration can be seen in appendix 6.3 figure
6.1. This is the proof that the reconstruction algorithm recovers from the bad effects in the
first iteration due to the iterating process.
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Figure 4.14: Normal reconstruction of a 20GeV muon surpassing the center of the detector in
the xy-plane.

4.7.2 Result of the reconstruction with a probability mask

around the track

The reconstruction algorithm just using the probability mask created from the track informa-
tion (see section 4.5), which is the MC data of the muon in this first tests, can be seen in figure
4.15. The result is better than the former approach. The particle shower at x = (600,0,0)
gets assigned spatial number density of emitted photons. An overestimation on the entry and
exit point of the muon is still existent, thus a failure in the near field is still imminent. The
improvements originate from the squeezing of the full information into a smaller corridor.
The succeeding ninth iteration can be seen appendix 6.3 figure 6.2. No major differences can
be seen between the normal reconstruction with and without the probability mask around the
track of the primary particle. This qualitatively proves that sharp probability masks have no
bad effects on muons not stopping in the detector. For stopping muons sharp probability masks
have been found to have bad edge effects for the reconstruction algorithm [46].

61



4 Showering muons in liquid scintillator detectors

Figure 4.15: Normal reconstruction with a pre-defined probability mask of a 20GeV muon
surpassing the center of the detector in the xy-plane.

4.7.3 Result of the reconstruction algorithm utilizing the SLA

If the SLA is added the result of the reconstruction can be seen in figure 4.16. On the entry
point of the muon the SLA actually works, reducing the spatial number density of emitted
photons. On the exit point the SLA fails, as an additional energy deposition is done which can
be seen in the MC-data printed. The SLA therefore ignores more light from the shower, located
at x = (650,0,0)cm, as it should and still overestimates the exit point. One explanation is the
binning. The problematic zone on the exit point contains just a few bins of an edge length of
l = 100cm. With the speed of light in the liquid scintillator of approximately 20 cm

ns , deviations
of bin centres due to random binning and the rough binning itself do not accurately represent
the near field, as they cause uncertainties of a few nanoseconds. Another strategy has to be
found, which reduces the volume of the bins in these areas. The ninth iteration can be seen
in appendix 6.3 figure 6.3. The result is still consistent with the MC-data but is essentially
more focussed on areas with a higher energy deposition. Other areas nearly vanish in spatial
number density of emitted photons.

Therefore, it is necessary to remove the PMTs near the entry and exit point of the muon to
ensure a succeeding first iteration of the reconstruction. The in detail tested approaches were
the reconstruction with just the probability masks and the PMTs near the track removed and
the same approach with the SLA added on top. The radius around the track was set to 300cm
for the rule to turn off PMTs. Both can be seen in figure 4.17 and figure 4.18 respectively.
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Figure 4.16: Reconstruction with a pre-defined probability mask and the SLA of a 20GeV
muon surpassing the center of the detector in the xy-plane.

4.7.4 Result of the enhanced reconstruction algorithm without

the SLA

The reconstruction algorithm with the probability mask and the PMTs near the track turned
off seems to succeed in the first iteration, which can bee seen in figure 4.17a. Therefore, 8
further iterations were made, reducing the binning to 50× 50× 50cm3. Unfortunately the
overestimation of the entry and exit point still occurs in the ninth iteration, which can be seen
in figure 4.17b. Thus the near field does not profit enough if the PMTs near the track are
ignored in a 300cm radius. Increasing the radius for this rule would yield a better result for
the far field, but would effectively ignore the near field. Further studies regarding the effects
on the reconstruction result with an asymmetrical PMT distribution are necessary.
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(a) First iteration.

(b) Ninth iteration.

Figure 4.17: Normal reconstruction with a pre-defined probability mask of a 20GeV muon
surpassing the center of the detector in the xy-plane. In addition the PMTs near
the track of the muon are turned off for the reconstruction.
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4.7.5 Result of the enhanced reconstruction algorithm

The enhanced reconstruction algorithm contains the normal reconstruction algorithm with a
probability mask around the track and the SLA. Furthermore, the PMTs within 300cm of the
track of the muon are turned off.

Looking at the enhanced reconstruction algorithm, the first iteration in figure 4.18a is look-
ing worse to the former approach. The shower is found, but the spatial number density of
emitted photons in the near field seems to vanish. This may be true in relation to the shower,
but is still false in relation to the rest of the track. The ninth iteration in figure 4.18b yields
a better result and is mostly consistent with the MC-Data. The shower is estimated properly
, but the near field has a nearly vanishing spatial number density of emitted photons. Thus
the scattered light algorithm ignores light from the near field on a rough binning, instead of
correcting it properly.

In conclusion the fully enhance reconstruction algorithm yields the best result, although the
near field was not reconstructed properly. For the study of the identification of showers of
muons the events surpassed mostly the far field. Thus a failure of the enhanced reconstruction
algorithm is not to be expected.
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(a) First iteration.

(b) Ninth iteration.

Figure 4.18: Reconstruction with a pre-defined probability mask and the SLA of a 20GeV
muon surpassing the center of the detector in the xy-plane. In addition the PMTs
near the track of the muon are turned off for the reconstruction.
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4.8 Identification of showering muons

The resulting spatial number density of emitted photons holds information of the spatial energy
deposition of the charged particles. Thus, the reconstruction algorithm is able to identify the
position of high energy deposition which could be induced by a showering muon. Utilizing
the improved reconstruction algorithm makes the topological muon event reconstruction for
multi-GeV muon energies accessible.

One possible way to examine the energy deposition for multi-GeV muons is the projection
of the result of the reconstruction algorithm on the track of the muon. This allows a determina-
tion of epicentres of high energy deposition. The track of the muon can be determined using
the pre-reconstruction information of the track of the muon (See section 4.5). If the recon-
struction is build on the raw reconstruction algorithm (see section 3.4.1) the track of the muon
can be determined by various algorithms [25]. Since the reconstruction utilized a probability
mask with the track information of the primary particle, this information was used. Therefore,
the track used for these projections is the track of the MC-Truth data.

The content of the bins in the reconstruction algorithm was projected perpendicular to the
track of the muon using the calculation in appendix 6.2.1. Furthermore, the MC-Data is used
as a reference. Unfortunately the MC-Data does not cover the full spatial number density of
emitted photons of the event. But the MC data covers all secondary particles created storing
the value of their initial energies. This can be utilized as an approximation to the number of
created photons, but does not yield the exact number, as the light production in the scintillator
is not the same for different particles. Therefore the energies of the secondary particles were
projected on the track of the primary muon. Because most secondary particles do not travel far
from their origin, the point between their start and end point was projected. This clearly marks
the epicentres of high energy depositions. Thus this suffices the requirement of a reference for
the identification of muon showers.

Although no quantitative evaluation was done, a good qualitative result could be reproduced
for 10 events of 40GeV muons. Therefore, two remarkable events are chosen as examples.
The first event can be seen in figure 4.19 with the relative energy calculated by the enhanced
reconstruction algorithm in figure 4.19a and the energy distribution based on the energies of
the secondary particles of the MC-Data in figure 4.19b. The x-axis represents the track of the
primary particle starting on the vertex at x = 0cm in these figures.
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4 Showering muons in liquid scintillator detectors

(a) Relative energy distribution over the track of the
primary particle computed with the enhanced
reconstruction algorithm.

(b) Distribution of the energy of the secondary par-
ticles based on the MC-Truth data over the track
of the primary particle.

Figure 4.19: Comparison of the energy distributions calculated with the enhanced reconstruc-
tion algorithm and the MC-Data. Both graphs start at the vertex of the primary
particle. The primary particle is a muon with an initial kinetic energy of 40GeV.
The plot of the reconstruction can be viewed in appendix 6.4 figure 6.4

The enhanced reconstruction algorithm is able to locate the muon shower at the position
x = 2750cm on the track. This is consistent with the huge amount of particles produced
stated by the MC-Data. It is necessary to note that the MC-Data does not reveal the true
energy, which gets deposited. It does not take the actual scintillation effect into account.
Therefore, basic differential energy loss can be seen in the reconstructed energy distribution.
The edge effects of the reconstructed energy distribution decreasing approaching x = 0cm
and x = 9750cm is due to the detectors geometry. In these areas there is not as much target
volume nearby. Thus, the projection onto the track does not represent the relative energy
loss in these areas. Since the focus lies on the identification of high energy depositions these
effects are ignored and not corrected with the actual target volume perpendicular to the track.
Furthermore, the cap PMTs are not included in the enhanced reconstruction algorithm. Thus
the information near the caps is to treat with caution. Nonetheless the algorithm and the track
projections work well for the target volume more than 500cm apart from the detector caps.

The cut to zero at x = 9600cm in the projection of the reconstruction algorithm is due to
the particle leaving the target volume. The MC-data further covers the buffer and veto, which
is not relevant for this analysis.

The second event can be seen in figure 4.20. Both graphs are shown in the same way as for
the former muon event.
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4.8 Identification of showering muons

(a) Relative energy distribution over the track of the
primary particle computed with the enhanced
reconstruction algorithm.

(b) Distribution of the energy of the secondary par-
ticles based on the MC-Truth data over the track
of the primary particle.

Figure 4.20: Comparison of the energy distributions calculated with the enhanced reconstruc-
tion algorithm and the MC-Data. Both graphs start at the vertex of the primary
particle. The primary particle is a muon with an initial kinetic energy of 40GeV.
The plot of the reconstruction can be looked up in appendix 6.4 figure 6.5

The enhanced reconstruction algorithm is able to locate the muon shower4 at x = 7250cm
and also the second peak at x = 9000cm. Unfortunately the peak at x = 1500cm is not fully
explainable with the MC-Truth. It needs to be stated, that the secondary particles are no exact
measure for the number of photons emitted. The comparability is only given for huge energy
depositions like a muon shower.

For a better overview both reconstruction results are shown as projection plots with the
particles of the MC-Data printed on top in figure 4.21.

The reconstruction result is a good fit to the MC-event data, although this is the first iteration
of the reconstruction algorithm. If an evaluation beyond the localisation of the muon shower
is needed, more iterations are needed.

The other 8 events yield the same result, if the muon produced a shower. If the energy
deposition was distributed over the whole track, no clear difference could be found. Therefore,
more iterations are needed.

4This was actually a hadronic shower
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4 Showering muons in liquid scintillator detectors

The following example in figure 4.21 depicts a problematic case for the analysis.

(a) Relative energy distribution over the track of the
primary particle computed with the enhanced
reconstruction algorithm.

(b) Distribution of the energy of the secondary par-
ticles based on the MC-Truth data over the track
of the primary particle.

Figure 4.21: Comparison of the energy distributions calculated with the enhanced reconstruc-
tion algorithm and the MC-Data. Both graphs start at the vertex of the primary
particle. The primary particle is a muon with an initial kinetic energy of 40GeV.
The plot of the reconstruction can be seen in appendix 6.4 figure 6.6

The MC energy distribution in figure 4.21b shows a high energy deposition near x= 9600cm
on the track. This region is not fully covered with target volume and near the cap PMTs, which
are turned off. Therefore, the enhanced reconstruction algorithm does not yield the best result
for this region, which can be seen in figure 4.21a. Furthermore, the region around x = 2600cm
does get more spatial number density of emitted photons, which is explainable with the MC-
data. The region around x = 1000cm also gets a huge valuation. This does not correspond
with the MC-data. The differences between the energy distributions are therefore not distinct
enough. In these cases the MC-data of the secondary particles is to be read with caution. It
does not cover the full data about each photon created. With these relatively small deviations
in the energy distribution a concrete evaluation can not be made.
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5 Conclusion

Within this bachelor thesis showering muons were analysed with the novel algorithm for topo-
logical reconstruction in liquid scintillator detectors developed in Hamburg. Therefore, multi-
GeV muon events were simulated with the LENA simulation and reconstructed with the novel
reconstruction algorithm, which got enhanced for high energy events by developing suitable
probability masks and an algorithm to correct false information yield by scattered light. The
goal was to spatially resolve muon showers in the detector to prove that an effective veto-
ing of the muon background in liquid scintillator detector events is possible with the novel
reconstruction algorithm.

The first result is an improved reconstruction algorithm for multi-GeV muon events. This
shows in particular, that sharp probability masks can be applied to muons fully traversing the
detector (see section 4.5). This allows an early application of an algorithm to correct scattered
light (see section 4.3). Furthermore, these probability masks reduce the long run time of the
reconstruction algorithm by the iterations, which are necessary to find the topology of the
event. In addition, the scattered light algorithm induces positive effects on the reconstruction
result, although it does not correct the problematic near field of PMTs. For this instance
the deliberate ignoring of PMTs near the muons entry and exit point in the reconstruction
algorithm has been proven to be robust. The lost information affects solely the near field of
those PMTs. Combined, those improvements promise good results for the reconstruction of
high energy muons (See section 4.7).

The second result is the possibility to spatially resolve particle showers of muons with the
enhanced reconstruction algorithm. In a first qualitative analysis only small deviations of the
epicentre of a particle shower from the reconstructed data to the MC data was found in 10
muon events of 40GeV initial kinetic energy (see section 4.8). Furthermore, the analysis was
performed with the first iteration of the enhanced reconstruction algorithm, not fully taking ad-
vantage of the capabilities of the reconstruction algorithm. In addition the computation time of
∼ 40min on a Intel Xeon 2.67GHz CPU for the first iteration of a muon with 40GeV initial ki-
netic energy is reasonable. There is a possibility of further optimizations and a parallelisation,
as well as much better hardware.
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5 Conclusion

Thus, the reconstruction algorithm can be applied to calculate a suitable veto for the muon
background in large liquid scintillator detectors.

The relevance of this reconstruction strategy for the upcoming JUNO experiment depends
on further improvements. At first the scattered light algorithm demands JUNO specific look-
up-tables for scattered light. Furthermore, the strategy regarding the binning for the scattered
light algorithm needs improvements for the near-field. In addition the run time of the recon-
struction algorithm is intolerable. Therefore, the conditioning of the reconstruction algorithm
for a parallelisation is inevitable.
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6 Appendix

6.1 Macros for the LENA Simulation

The following subsections contain the macros for the LENA simulation. The given values are
for the events discussed in chapter 4. For a detailed documentation of the command lines see
[35].

6.1.1 Physics.mac

1 #nuclear processes

2 /Lena/phys/reg G4EmExtra

3 #elastic hadron processes not covering neutrons

4 /Lena/phys/reg G4HadronElastic

5 #inelastic hadron processes including elastic processes for

↪→ neutrons

6 /Lena/phys/reg HadronQGSP_BERT_HP

7 #capture processes

8 /Lena/phys/reg G4QStopping

9 #physics processes for ions

10 /Lena/phys/reg G4Ion

11 #optical photon physics(e.g. scintillation/scattering

↪→ process)

12 /Lena/phys/reg LenaOP

13 #radioactive decays

14 /Lena/phys/reg G4Radioactive

15 #muonnuclear processes (extended package for muons in LENA)

16 /physics_engine/tailor/MuonNuclear on

17 #initialize the physics list

18 /run/initialize
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19 /control/verbose 2

20 /run/verbose 2

21 #set the light yield in MeV^{-1}

22 /Lena/det/light_yield 2000

23 #don ’t generate dark counts/late pulses/after pulses

24 /Lena/det/dark_noise false

25 /Lena/det/late_pulses false

26 /Lena/det/after_pulses false

27 #turn off time of flight correction of simulated photon hits

28 /Lena/det/tof false

29 #simulate particles with a particle gun

30 /Lena/gun/type 0

31 #particle type (here: muon)

32 /gun/particle mu-

33 #the primary particles kinetic energy

34 /gun/energy 40000 MeV

35 #position of the gun (vertex of the primary particle)

36 /gun/position 1000 830 4600 cm

37 #direction of the primary particle

38 /gun/direction -0.209202833 -0.173638351 -0.96233303

6.1.2 Geometry.mac

1 #use PMTs indivdually (false: use the whole detector wall)

2 /Lena/det/pmts true

3 #don ’t use a geometrical model of the winston cones (saves

↪→ computation time)

4 #but use the angle LUTs from BOREXINO (type 1)

5 /Lena/det/winston_cones_geo false

6 /Lena/det/winston_cones true

7 /Lena/det/winston_cones_type 1

8 #simulate PMTs as flat discs

9 /Lena/det/pmt_sphere false

10 #set data for PMT discs

11 /Lena/det/geo/setRadiusPMTEncapsulation 27 cm
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6.1 Macros for the LENA Simulation

12 /Lena/det/geo/setRadiusPMT 0.255440795489 m

13 /Lena/det/geo/setHeightPMTEncapsulation 0.1 cm

14 #set the PMT distribution

15 /Lena/det/geo/setNumPMTRings 185

16 /Lena/det/geo/setNumPMTPerRing 144

17 /Lena/det/geo/setNumPMTRingsCap 25

18 /Lena/det/geo/setPMTRingCapConst 6

19 #--- DETECTOR GEOMETRY ---#

20 #set radius and hight of the veto , tank , target and buffer

21 /Lena/det/geo/setRadiusVeto 18.6 m

22 /Lena/det/geo/setHeightVeto 50.6 m

23 /Lena/det/geo/setRadiusTank 16.6 m

24 /Lena/det/geo/setHeightTank 50.6 m

25 /Lena/det/geo/setRadiusTarget 14 m

26 /Lena/det/geo/setHeightTarget 48 m

27 /Lena/det/geo/setRadiusOuterBuffer 16 m

28 /Lena/det/geo/setHeightOuterBuffer 50 m

29 /Lena/det/geo/setRadiusBuffer 14.25 m

30 /Lena/det/geo/setHeightBuffer 48.25 m

31 #position the PMT at the edge of the buffer , so that are

↪→ completely inside the buffer volume

32 /Lena/det/geo/setDistanceTankPMT 0.20 m

33 #update the geometry (fully loads the now specified detector

↪→ )

34 /Lena/det/update

6.1.3 Template.mac

1 #save the Monte Carlo Event data

2 /Lena/run/saveMcData true

3 #RNG (Random Number Generator) seed set by the time

4 /Lena/run/setSeedFromTime

5 #do not save RNG -seeds

6 /Lena/run/saveMcSeed false

7 #normal simulation type
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8 /Lena/run/sim_type 2

9 #save every photon hit , but save only minimal information

↪→ about each hit (only hit time)

10 /Lena/run/sim_subtype 3

11 #load the physics.mac and geometry.mac

12 /control/execute /nfs/neutrino/data2/fbenckwitz/lenasim/

↪→ trunk/macros/physics2.mac

13 /control/execute /nfs/neutrino/data2/fbenckwitz/lenasim/

↪→ trunk/macros/geometry.mac

14 #set the output path

15 /Lena/run/setOutputPath /nfs/neutrino/data2/fbenckwitz/

↪→ lenasim/trunk/simoutput/

16 #set the filename

17 /Lena/run/setOutputFileName

↪→ mu__n10__40GeV__1000_830_4600_cm__ -0.209_ -0.174_ -0.962

↪→ _10particles

18 #set the number of successive events

19 /run/beamOn 10

6.2 Mathematical derivations

Some basic mathematical derivations used for this thesis are collected in this section of the
appendix.

6.2.1 Calculating the distance point-line in three dimensions

For this derivation the shortest distance of a point xp to a line [x ∈ R3|x = x0 +a ·v] is calcu-
lated. x0 is the line’s reference point and v is the direction vector and a ∈ R1.

At first the start vector vs is calculated as the difference between xp and a point on the line
(for simplicity the reference point x0 is used).

This can be seen as a simple transformation vector for the origin of the x-,y-,z-coordinates
0 to the reference point x0. Having the reference point x0 as origin, the vector v0n between
the reference point x0 and the nearest point on the particle track xn to the point xp can be

1There is no starting- nor ending-point and this vector is normalized to |v|= 1
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6.2 Mathematical derivations

calculated. The vector v0n is the scalar product between the start vector vs and the normalized
direction vector v multiplied with the normalized track vector v.

v0n = (vs ·v) ·v (6.1)

Knowing the nearest point xn on the line

xn = v0n +x0 (6.2)

The distance of the difference between the nearest point xn and the point xp can be calculated
by

d = |xn−xp| (6.3)

6.2.2 Generating randomized bin centres

The generation of random numbers was done with the TRandom3 class in the ROOT frame-
work [8] which is based on the Mersenne Twister [33]. The seed for the random numbers
was given by the unix timestamp2.

The three dimensional cubic bins have a center point xc and a n edge length l. The aim is to
redistribute the center points within the cubic volume around the former bin.

TRandom3 provides a pseudo random value of double precision in the interval [0.0,1.0].
By simply adding −0.5 the interval shifts to [−0.5,0.5]. This random double ai

3 times the
edge length l shifts the center point within the bin volume. The new center point x∗c can be
calculated by

x∗c = xc +

 ail

ai+1l

ai+2l

 (6.4)

2Number of seconds passed since January 1, 1970 Coordinated Universal Time (UTC)
3The positive integer index i denotes the different random numbers

77



6 Appendix

6.3 Additional Plots

This part of the appendix covers plots of the reconstruction algorithm. The different improve-
ments made are listed as subsection to create a good overview.

6.3.1 Normal reconstruction

Figure 6.1: Normal reconstruction of a 20GeV muon surpassing the center of the detector in
the xy-plane.
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6.3 Additional Plots

6.3.2 Normal reconstruction with a cylindrical probability mask

Figure 6.2: Normal reconstruction with a pre-defined probability mask of a 20GeV muon sur-
passing the center of the detector in the xy-plane.

6.3.3 Reconstruction considering scattered light

Figure 6.3: Reconstruction with a pre-defined probability mask and the SLA of a 20GeV
muon surpassing the center of the detector in the xy-plane.
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6.4 Additional plots for the identification of

showering muons

Figure 6.4: Projections of the reconstruction result with the particles of the MC-Data printed
on top.

Figure 6.5: Projections of the reconstruction result with the particles of the MC-Data printed
on top.
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6.4 Additional plots for the identification of showering muons

Figure 6.6: Projections of the reconstruction result with the particles of the MC-Data printed
on top.
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