Search for hidden particles with the SHiP experiment DPG Frühjahrstagung 2017 – Münster

Daniel Bick

March 29, 2017

SM very successful, however...

Strong Evidence for BSM Physics

- neutrino masses and oscillations
- the nature of non-baryonic Dark Matter
- excess of matter over antimatter in the Universe
- cosmic inflation of the Universe

Shortcoming of Theory

- gap between Fermi and Planck scales
- Dark Energy

. . .

connection to gravity

New/extended models needed

UH

- Unsolved problems \rightarrow new particles
- Why haven't we seen them, yet?
 - Too heavy or too weakly interacting

Image: CERN Courier 2/2016

• Phenomenologies of hidden sector models share a number of unique and common physics features

Models	Final States
Neutrino portal, HNL, SUSY neutralino	$\ell^{\pm}\pi^{\mp}$, $\ell^{\pm}K^{\mp}$, $\ell^{\pm} ho^{\mp}$
Vector, scalar, axion portals, SUSY sgoldstino	e^+e^- , $\mu^+\mu^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^+\pi^-$, K^+K^-
Neutrino portal, HNL, SUSY neutralino, axino	$\ell^+\ell^- u$

- Production through meson decays (π, K, D, B)
- Production and decay rates are strongly suppressed relative to SM
 - production branching ratios $\mathcal{O}(10^{-10})$
 - long-lived objects $\mathcal{O}(\mu s)$
 - travel unperturbed through ordinary matter

Minimal approach, extends SM by three neutral particles

- N_i: 3 Heavy Neutral Leptons (HNL)
- $N_1: \sim 10 \, \mathrm{keV}$
 - DM candidate
- N_2 , N_3 : ~ GeV region
 - neutrino masses
 - baryon asymmetry of the Universe

D. Bick (UHH)

- typical lifetimes $> 10 \,\mu s$ for $m_{N_{2,3}} \sim 1 \, {\rm GeV}$
- decay distance $\mathcal{O}(\mathrm{km})$
- Detection of hidden particles through their decay in SM particles
- Detector must be sensitive to as many decay modes as possible
- \triangleright Full reconstruction essential to minimize model dependence
- Branching ratios suppressed compared to SM couplings $\mathcal{O}(10^{-10})$
- $\triangleright\,$ challenging background suppression \rightarrow estimated $\mathcal{O}(0.01)$ needed

- typical lifetimes > 10 μs for $m_{N_{2,3}} \sim 1 \, \text{GeV}$
- decay distance $\mathcal{O}(\mathrm{km})$
- Detection of hidden particles through their decay in SM particles
- Detector must be sensitive to as many decay modes as possible
- Full reconstruction essential to minimize model dependence
- Branching ratios suppressed compared to SM couplings $\mathcal{O}(10^{-10})$
- \triangleright challenging background suppression \rightarrow estimated $\mathcal{O}(0.01)$ needed

• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \,\mathrm{GeV}$ and extremely weak couplings down to 10^{-10} .

• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \,\mathrm{GeV}$ and extremely weak couplings down to 10^{-10} .

- large decay volume followed by spectrometer, calorimeter, PID
- shielding from SM particles: hadron absorber and veto detectors

Fixed Target Facility @ SPS North Area

- $400 \, \mathrm{GeV}$ protons
- $4 \cdot 10^{13} \text{ pot/spill (every 7 s)}$
- $\triangleright~2\cdot 10^{20}~{\rm pot}$ in 5 years

Target

- 58 cm Mo (4 λ), 58 cm W (6 λ)
- Optimized for heavy meson production
- Followed by hadron stopper

Deal with 10^{10} muons/spill

- active magnetic muon shield and passive absorber
- less than 100k $\mu/{\rm spill}$ remaining

• The facility is also ideally suited for studying ν_{τ} and $\bar{\nu}_{\tau}$ properties and testing lepton flavor universality by comparing interactions of μ and τ neutrinos.

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_{p} \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_{s}} Br(D_{s} \to \tau)$$

= 2.85 × 10⁻⁵N_p = 5.7 × 10¹⁵
$$D_{s}^{\dagger} \Big|_{\bar{s}}^{c}$$

$\nu\text{-production}$ @ p-target

SM Physics

- $5.7\cdot 10^{15} \ \nu_{\tau}$ and $\bar{\nu}_{\tau}$
- $5.7\cdot 10^{18}~\nu_{\mu}$ and $\bar{\nu}_{\mu}$
- $3.7\cdot 10^{17}~\nu_e$ and $\bar{\nu}_e$

	< E > (GeV)	Number of ν
ν_{μ}	30	$2.3 \cdot 10^{6}$
ν_e	46	$3.4 \cdot 10^{5}$
ν_{τ}	58	$7.1 \cdot 10^3$
$\bar{\nu}_{\mu}$	27	$9.5 \cdot 10^{5}$
$\bar{\nu}_e$	46	$1.4 \cdot 10^5$
$\bar{\nu}_{\tau}$	58	$3.6 \cdot 10^{3}$

Emulsion Spectrometer

- $9.6 \operatorname{tons} emulsion/lead target in magnetic field:$
- + 11 walls of 14×6 ECC-bricks, replaced every 6 months for scanning
- $\triangleright\,$ Total number of bricks: $924 \rightarrow 6930\,m^2$ emulsion films
- Each brick is followed by a compact emulsion spectrometer
- Resolution of $1\,\mu m$

u_{τ} Physics and more. . .

UH

Direct measurements of tau neutrino CC-interaction fairly recent

- DONUT: 9 ± 1.5 events
 - no distinction between ν_τ and $\bar{\nu}_\tau$
- OPERA: 5 events
 - only ν_{τ}

SM Physics opportunity for SHiP

- $\mathcal{O}(4000) \ \nu_{\tau}/\bar{\nu}_{\tau}$ interactions
- \triangleright Study the properties and cross-section
- \triangleright First observation of $\bar{
 u}_{ au}$
- Light Dark Matter search
- Extraction of F_4 and F_5 structure functions
- Measure the s-content of the nucleon

Background sources and rejection strategies

- $\nu\text{-}$ and $\mu\text{-}\text{induced}$ backgrounds
 - e.g inelastic $\nu\text{-interactions}$ in the surroundings of the HP detector
 - $\triangleright\,$ Reconstructed momentum must point back to proton target
 - ▷ Veto upstream the decay volume
 - Reconstructed vertex must be in decay volume
- Random combination of tracks
 - Rate at spectrometer: $7\,\rm kHz/spill$
 - $\triangleright~$ Timing veto with a precision of $\mathcal{O}(100\,\mathrm{ps})$
 - $\triangleright~$ Surround background tagger and upstream veto detector
- Cosmic muons
 - Scattering/DIS on cavern and vessel walls
 - $\triangleright~$ Surround background tagger and upstream veto detector
 - Event topology, pointing of momentum
- Backgrounds have been investigated in extensive MC studies.
- \triangleright Overall expected background: less than 0.1 events in 5 years

D. Bick (UHH)

Some Sensitivities

Vector Portal

D. Bick (UHH)

The People behind SHiP

HU H

HU Berlin

- Liquid Scintillator Surround Background Tagger
- $\,\triangleright\,$ Studies of wavelength shifting optical modules

JGU Mainz

- Pre-shower detector for ECAL
- Support of scintillator studies for the SBT

Uni Hamburg

Universität Hamburg der forschung | der lehre | der Bildung

- Straw Tube operation for the main spectrometer
- \triangleright use of straws also in emulsion spectrometer

More groups welcome!!!

Summary

- SHiP is proposed to complement searches for new physics at CERN in the largely unexplored domain of new, very weakly interacting particles with masses $\mathcal{O}(10)~{\rm GeV}$
- Also great opportunities for SM physics
 - \triangleright Improve sensitivity of ν_{τ} -physics by $\mathcal{O}(1000)$
- Recognized as an experiment by CERN since May 2016
- Optimization ongoing

Summary

- SHiP is proposed to complement searches for new physics at CERN in the largely unexplored domain of new, very weakly interacting particles with masses $\mathcal{O}(10)~{\rm GeV}$
- Also great opportunities for SM physics
 - \triangleright Improve sensitivity of ν_{τ} -physics by $\mathcal{O}(1000)$
- Recognized as an experiment by CERN since May 2016
- Optimization ongoing

Accelerator schedule	2015	2016 2017	2018	2019	2020	2021	2022	2023	2024 20	25	2026	2027
LHC		Run 2					Run 3		LS3			Run 4
SPS									SPS	stop		
Detector		R&D, design and p	ototyping			Producti	on		Installation			
Milestones	TP		CDR	TDR	PRR					_	CwB	Data taking
Facility		Ir	tegration								CwB	
Civil engineering		_	Pre-o	onstruction		Target - De	etector hall - B	Beamline	- Junction (WP1)	CwB:	
Infrastructure							Instal	lation	Installation	Inst	Comm	issioning
Beamline		R&D, design and	CDR			← Produc	tion \rightarrow		Installation		with b	eam
Target complex		R&D, design	and CDR		←	Production \rightarrow		Ins	tallation	_		
Target		R&D), design and	CDR + prot	otyping		P	roduction	Installatio	n		

- Currently in the conceptual design phase
- ▷ Comprehensive Design Report by the end of 2018
- \triangleright recommended by the SPSC
- Input for the Update of the European Strategy for Particle Physics 2019
- Begin construction during LHC long shutdown 3
- ▷ Data taking in 2026

SHiP-related talks

UHI #

Stefan Bieschke - HK 8.8, Mo, 18:45-19:00

Multicomponent drift gas mixtures for the SHiP Muon Magnetic Spectrometer

Caren Hagner - T 34.2, Di, 11:20-11:40

Gruppenbericht: Neutrino Physics within the SHiP Experiment

Maximilian Ehlert - T 68.4, Di, 17:35-17:50

WOM-Prototypen für die Auslese des Flüssigszintillator SBT im SHiP-Experiment

Paul Rosenau – T 68.5, Di, 17:50-18:05 Verspiegelung von WOMs zur Steigerung der Nachweiseffizienz

levgen Korol - T 78.2, Mi, 17:05-17:20

Search for hidden particles at SHiP: impact of the vertex reconstruction

Plamenna Venkova – T 78.3, Mi, 17:20-17:35

The role of the Surround Background Tagger for the SHiP experiment