Status of LENA and Developments in Large Liquid Scintillator Detectors

Next Generation Nucleon Decay and Neutrino Detectors - NNN12

Daniel Bick

Universität Hamburg Der Forschung | Der Lehre | Der Bildung

October 6, 2012

What do we gain from a next-generation neutrino detector?

- better understanding of astrophysical an terrestrial u sources
- investigation of neutrino properties
- target for neutrino beam
- search for proton decay
- KamLAND and Borexino show the outstanding physics potential of liquid scintillator detectors.
- $\, \bullet \,$ Increase detection sensitivity and precision $\, \rightarrow \,$ higher target masses.
- A large LS detector addresses a large range of NNN physics!

Physics with Liquid Scintillator

Neutrino Physics

- Galactic supernova neutrinos
- Diffuse supernova ν background
- Solar neutrinos
- Geoneutrinos
- Reactor neutrinos
- Neutrino oscillometry
- Neutrino beams
- Atmospheric neutrinos
- π decay @ rest beam

Also

- Indirect dark matter search
- Proton decay

D. Bick (UHH)

Detection channels

- $\begin{array}{ll} \nu: & \mbox{elastic scattering } \nu + e^- \rightarrow \nu + e^- \\ & \mbox{proton recoil } \nu + p \rightarrow p + \nu \\ & \mbox{reactions on } ^{12}\mbox{C (NC and CC)} \end{array}$
- $\bar{\nu}_e$: inverse β -decay $\bar{\nu}_e + p \rightarrow e^+ + n$

Advantages of LS

- very low energy threshold ($\approx 200\,{\rm keV})$
- good energy resolution ($\approx 7\%$ @ $1\,\text{MeV})$
- proven purification techniques for high radiopurity

Background rejection

- pulse shape analysis
- coincidence signals

LENA Detector

LENA Detector Design

D. Bick (UHH)

Egg shaped cavern

D

H.

H

d.,,,

H,

Tank Design

UHI

Hollow-Core Concrete Tank

- o 600 mm wide concrete layer
- covered on both sides by thin steel sheets
- $\rightarrow\,$ compatibility with the scintillator
 - Cylindrical cavities of 300 mm diameter and 500 mm interspacing
- $\rightarrow\,$ reduce the needed amount of material
- $\rightarrow\,$ space for installations (e.g. cooling or active leak proving)

PMT Support Structure

UH #

- scaffolding 2 m from tank wall
- optical separation of inner volume by non-reflective plastic sheets
- $\Rightarrow \text{ reduces impact of } \gamma \text{ activity} \\ \text{from concrete tank wall}$

Optical Modules

- Winston cones for light concentration
- ${\scriptstyle \bullet}~\sim$ 30000 12" PMTs
- 30% optical coverage
- pressure encapsulation
- non-scintillating buffer volume included in front of the PMT
- total weight: 40 kg
- o contained within PSS

LENA Scintillator

- linear-alkyl-benzene as solvent
- high flashpoint 140°C
- PPO + bisMSB as wavelength shifters
- emission @ 430 nm
- time response: 5.2 ns
- high light yield $\sim 10^4~\gamma$ per MeV
- high transparency $\sim 20\,\mathrm{m}$
- low cost (< 1.30 \in / ℓ)

Altogether 80300 m^3 (69.1 kt) needed.

LENA Site

UHI M

Anticipated site

- site study within LAGUNA
- Pyhäsalmi preferred
- deepest mine in Europe
- fully developed infrastructure
- access by both road decline and elevator shaft
- 4000 m water equivalent
- low reactor $\bar{\nu}_e$ flux

Pyhäsalmi

LENA Site

UHI M

Anticipated site

- site study within LAGUNA
- Pyhäsalmi preferred
- deepest mine in Europe
- fully developed infrastructure
- access by both road decline and elevator shaft
- 4000 m water equivalent
- low reactor $\bar{\nu}_e$ flux

Galactic Supernova Neutrinos

Multi-channel signatures

- core collapse supernova produces (ν_e) neutrino burst
- $\nu \bar{\nu}$ -pairs during cooling phase
- \rightarrow individual, time dependent spectra for different neutrinos
 - \circ 15000 ν interactions expected for SN in galactic center
 - different detection channels for individual neutrino flavors
 - main channels: inverse β -decay (> 10⁴ events)
 - $\nu p \rightarrow p \nu$ (few 1000 events depending on average ν energy)
 - energy and flavor resolved real-time analysis
- \Rightarrow follow different stages of core collapse
- \Rightarrow oscillations of SN ν s sensitive to mass hierarchy

• SNEWS

D. Bick (UHH)

LENA / Liquid Scintillator Detectors

UH

Diffuse Supernova Neutrino Background

- only 1–3 galactic supernovae per century
- isotropic neutrino background from SN on cosmic scales
- information on average neutrino spectrum
- redshifted by cosmic expansion
- expected flux: 100 $u/s/cm^2$
- not yet observed
- LENA: 2 20 events per year
- inverse β -decay: background free

Solar Neutrinos

Spectral measurements

- high statistics energy dependent flux measurements
- $\circ~\sim 10^4$ events per day
- \sim 200 CNO neutrinos
- fiducial mass: \sim 30 kt to reduce γ background

Oscillation physics

 test transition region of MSW effect

- Investigation of the Sun • metallicity
 - precise determination of SSM neutrino rates
 - search for time variations in 7 Be flux on a 10^{-3} level
 - helioseismic g-modes

Terrestrial $\bar{\nu}_e$

LENA will detect $\mathcal{O}(10^3)$ events from terrestrial $\bar{\nu}_e$ per year

Geoneutrinos

- o direct messengers → abundances and distribution of radioactive elements in Earth
- test radiogenic contribution to Earth heat flux: 1% precision
- 10 years LENA: 5% precision of U/TH flux ratio

Reactor Neutrinos

- background for geo- ν and DSNB
- high statistics study of oscillation parameters

D. Bick (UHH)

Neutrino Oscillometry

• monoenergetic ν_e source

- UHI #
- ν_e disappearance can be detected within the length of the detector
- reactor antineutrino anomaly \Rightarrow sterile neutrinos?
- $\rightarrow\,$ several oscillations within the first 10 m
 - test between 3+1 and 3+2 models

Pion Decay at Rest

Dae δ alus for LENA – look for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance

LENA has excellent detection efficiency for inverse β -decay.

$\sim 100~\text{IBD}$ per year for each baseline.

D. Bick (UHH)

LENA / Liquid Scintillator Detectors

Sensitivity to δ_{cn}

Coverage of CP violation Parameter at LENA, 10 years

UH

Large Apparatus for Grand Unification and Neutrino Astrophysics

LAGUNA design study

- 2008–2011
- 3 detector types

GLACIER 100 kt LAr TPC

MEMPHYS 440 kt water

LENA 50 kt liquid scintillator

- physics potential
- 7 locations in Europe
- cavern design

LAGUNA-LBNO

- follow up study (2011–2014)
- Long Baseline Neutrino Oscillations
- o possible beam @ CERN
- o detector tank
- instrumentation

Possible Beam from CERN

UHI

Long Baseline Neutrino Beam

- 2288 km from CERN to Pyhäsalmi
- conventional beam: $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- large distance ⇒ matter effects
- u_{μ} and $\overline{
 u}_{\mu}$ mode

CERN

Pyhäsalmi

Possible Beam from CERN

Long Baseline Neutrino Beam

- 2288 km from CERN to Pyhäsalmi
- conventional beam: $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- large distance ⇒ matter effects

CERN

Tracking

Event Reconstruction

D. Bick (UHH)

LENA / Liquid Scintillator Detectors

Mass Hierarchy

24 / 26

- Sensitivity plots created using GLoBES.
- 10 years <u>of beam (5ν, 5ν</u>).

LENA can set a limit of $\tau_P > 4 imes 10^{34}$ years in the channel

$$p \rightarrow K^+ + \bar{\nu}$$

- distinct pulse shape
- signal generated by kinetic energy deposition of kaon
- special for LS cherenkov threshold not reached in water
- prompt signal followed by signals from decay products
- background free for 10 years

- Liquid scintillator is optimal for neutrino detection in the MeV range.
- Rich physics program includes SN neutrinos, solar neutrinos, geo neutrinos, reactor neutrinos, neutrino oscillometry ...
- Significant progress has been achieved with tracking in the GeV Range.
- LENA as a far detector for a neutrino beam from CERN has the potential of determining the mass hierarchy at $>7\sigma$
- Sensitive to $au_p > 4 imes 10^{34}$ years in the channel $p o K^+ + ar{
 u}$.

5 Additional Slides

- SN Rates
- DSNB NC Background
- Mass Hierarchy and CP Violation
- Beam NC Background
- π⁰
- Tracking

Galactic Supernova Rates

UΗ

茁

29

Atmospheric neutrino NC reaction neutron production

$$\nu + {}^{12}\mathrm{C} \to {}^{11}\mathrm{C}^* + n$$

• tag β^+ from ¹¹C decay

- ¹¹C*: deexcitation via emission of p,n, or α
- $\rightarrow\,$ pulse shape analysis

Preliminary results: Monte-Carlo simulation based on recent results of PSD parameter on LAB scintillators

Improved Calculations for Mass Hierarchy

UΗ

11

$\nu + X \rightarrow \nu + X^* + { m other \ particles}$

- 44% $\pi^+ \rightarrow$ tagging of μ^+ (86% efficiency)
- 32% π^0 , no $\pi^+ \rightarrow$ multivariate analysis
- 1.7% e^\pm , $\gamma,~{\cal K}^{0,\pm}$
- 7% Pure $\pi^-
 ightarrow$ pulse shape
- 15% p, n
 ightarrow pulse shape

Conservative estimates:

27% of all CC are reconstructed

11% of all NC events are misidentified as CC events

$\pi^{\rm 0}\text{-}{\rm Discrimination}$ - Multivariant Analysis

UΗ

Ĥ

Preliminary Results

