Status and Physics of the SHiP experiment at CERN TAUP 2017 – Snolab

July 26, 2017

SM very successful, however...

Strong Evidence for BSM Physics

- Neutrino masses and oscillations
- The nature of non-baryonic Dark Matter
- Excess of matter over antimatter in the Universe
- Cosmic inflation of the Universe

Shortcoming of Theory

- Gap between Fermi and Planck scales
- Dark Energy

. . .

• Connection to gravity

New/extended models needed \Rightarrow new particles

UН

- Why haven't we seen these new particles, yet?
 - Too heavy or too weakly interacting

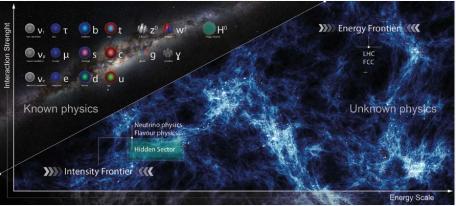
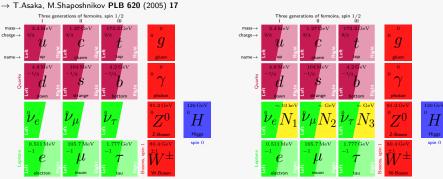
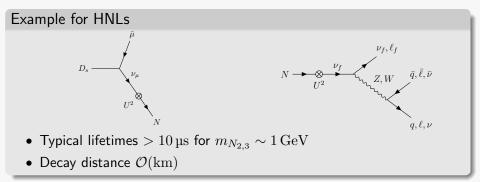


Image: CERN Courier 2/2016

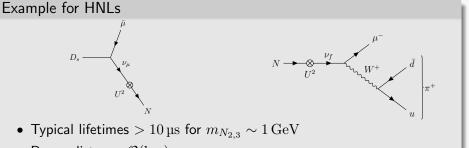
• Phenomenologies of hidden sector models share a number of unique and common physics features


Models	Final States
Neutrino portal, HNL, SUSY neutralino	$\ell^{\pm}\pi^{\mp}$, $\ell^{\pm}K^{\mp}$, $\ell^{\pm} ho^{\mp}$
Vector, scalar, axion portals, SUSY sgoldstino	e^+e^- , $\mu^+\mu^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^+\pi^-$, K^+K^-
Neutrino portal, HNL, SUSY neutralino, axino	$\ell^+\ell^-\nu$

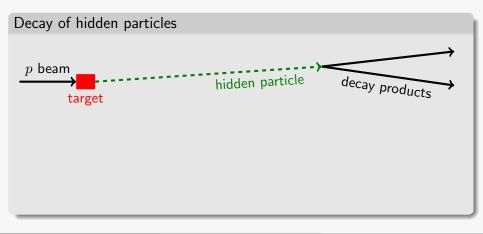
- Production through meson decays (π, K, D, B)
- Production and decay rates are strongly suppressed relative to SM
 - Production branching ratios $\mathcal{O}(10^{-10})$
 - Long-lived objects $\mathcal{O}(\mu s)$
 - Travel unperturbed through ordinary matter


Minimal approach, extends SM by three neutral particles

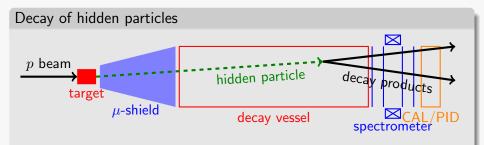
- N_i: 3 Heavy Neutral Leptons (HNL)
- $N_1: \sim 10 \, \text{keV}$
 - DM candidate
- N_2 , N_3 : ~ GeV region
 - Neutrino masses
 - Baryon asymmetry of the Universe

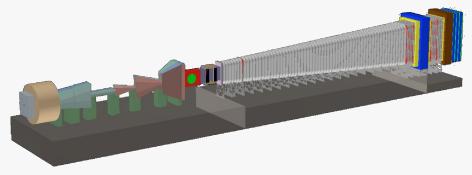


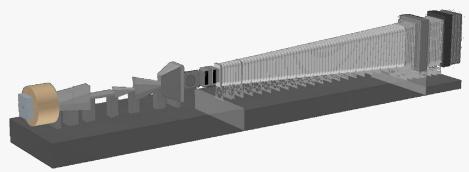
- Detection of hidden particles through their decay in SM particles
- Detector must be sensitive to as many decay modes as possible
- ▷ Full reconstruction essential to minimize model dependence
- Branching ratios suppressed compared to SM couplings $\mathcal{O}(10^{-10})$
- $\triangleright\,$ challenging background suppression \rightarrow estimated $\mathcal{O}(0.01)$ needed

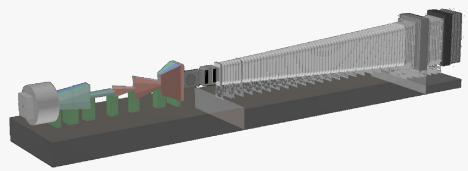


- Decay distance $\mathcal{O}(\mathrm{km})$
- Detection of hidden particles through their decay in SM particles
- Detector must be sensitive to as many decay modes as possible
- \triangleright Full reconstruction essential to minimize model dependence
- Branching ratios suppressed compared to SM couplings $\mathcal{O}(10^{-10})$
- $\triangleright\,$ challenging background suppression \rightarrow estimated $\mathcal{O}(0.01)$ needed


• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \,\mathrm{GeV}$ and extremely weak couplings down to 10^{-10} .


• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \,\mathrm{GeV}$ and extremely weak couplings down to 10^{-10} .


- Large decay volume followed by spectrometer, calorimeter, PID
- Shielding from SM particles: hadron absorber and veto detectors

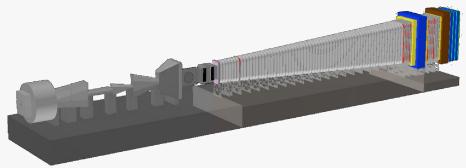


Target

- 58 cm Mo (4 λ), 58 cm W (6 λ)
- \triangleright Optimized for heavy meson production
- Followed by hadron stopper

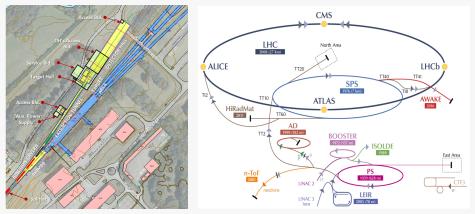
Active Muon Shield

- Deal with $10^{10} \ \mathrm{muons/spill}$
- Active magnetic muon shield and passive absorber
- Less than 100k $\mu/{\rm spill}$ remaining



Emulsion Spectrometer

- OPERA-like detector
- Magnetized neutrino targed (lead interleaved with photo emulsion)
- Followed by muon spectrometer


Decay Vessel and Hidden Particle Detector

- + $50\,\mathrm{m}$ Long evacuated decay vessel
 - $\triangleright 10^{-6} \text{ bar}$
 - $\triangleright~$ Surrounded by background taggers
- Straw Tube Spectrometer followed by calorimeters and muon detector

Fixed Target Facility @ SPS North Area

- + $400\,{\rm GeV}$ protons
- $4 \cdot 10^{13} \text{ pot/spill}$ (every $7 \, \mathrm{s}$)
- $\triangleright~2\cdot 10^{20}~{\rm pot}$ in 5 years

- Production of large amounts of Neutrinos
- $\triangleright~$ Study $\nu_{\tau}~$ and $\bar{\nu}_{\tau}~$ properties

SM Physics

 $\triangleright\,$ Test lepton flavor universality by comparing interactions of ν_{μ} and ν_{τ}

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_{p} \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_{s}} Br(D_{s} \to \tau)$$

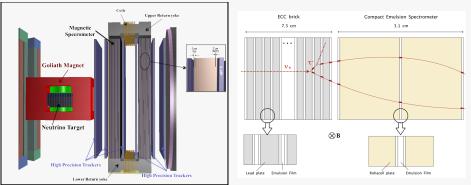
= 2.85 × 10⁻⁵N_p = 5.7 × 10¹⁵
$$D_{s}^{+} \left|_{\bar{s}}^{c} - \frac{\tau^{+}}{\nu_{\mu}} + \frac{\tau^{-}}{\nu_{\tau}} + \frac{\tau^{+}}{\nu_{\tau}} + \frac{\tau^{+}}{\tau} +$$

ν -production @ p-target

- $5.7\cdot 10^{15}~\nu_{ au}$ and $\bar{
 u}_{ au}$
- $5.7 \cdot 10^{18} \nu_{\mu}$ and $\bar{\nu}_{\mu}$
- $3.7\cdot 10^{17}~\nu_e$ and $\bar{\nu}_e$

Interac	tions @ $ u$ -	target
	< E > (GeV)	Number of ν
ν_{μ}	30	$2.3 \cdot 10^{6}$

ν_{μ}	30	$2.3 \cdot 10^6$
ν_e	46	$3.4 \cdot 10^{5}$
ν_{τ}	58	$7.1 \cdot 10^3$
$\bar{\nu}_{\mu}$	27	$9.5 \cdot 10^{5}$
$\bar{\nu}_e$	46	$1.4 \cdot 10^5$
$\bar{\nu}_{\tau}$	58	$3.6 \cdot 10^{3}$


UH

ΪÌ

Emulsion Spectrometer

- $9.6 \operatorname{tons} emulsion/lead target in magnetic field:$
- + 11 walls of 14×6 ECC-bricks, replaced every 6 months for scanning
- $\triangleright\,$ Total number of bricks: $924 \rightarrow 6930\,m^2$ emulsion films
- Each brick is followed by a compact emulsion spectrometer
- Resolution of $1\,\mu m$

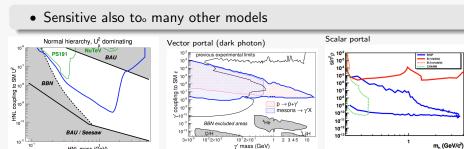
u_{τ} Physics and more. . .

UH

Direct measurements of tau neutrino CC-interaction fairly recent

- DONUT: 9 ± 1.5 events
 - no distinction between ν_τ and $\bar{\nu}_\tau$
- OPERA: 5 events
 - only ν_{τ}

SM Physics opportunity for SHiP


- $\mathcal{O}(4000) \ \nu_{\tau}/\bar{\nu}_{\tau}$ interactions
- $\triangleright~$ Study the properties and cross-section
- \triangleright First observation of $\bar{
 u}_{ au}$
- Light Dark Matter search
- Extraction of F_4 and F_5 structure functions
- Measure the s-content of the nucleon

Neutrino Portal

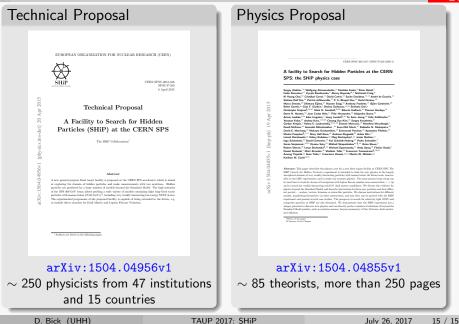
- HNLs: 120 events expected for $m_{N_{2,3}} = 1 \text{ GeV}$
- SHIP will scan most of the cosmologically allowed region below the charm mass

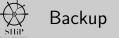
HNL mass (GeV)

10

Summary and Outlook

- SHiP is proposed to complement searches for new physics at CERN in the largely unexplored domain of new, very weakly interacting particles with masses $\mathcal{O}(10)~{\rm GeV}$
- Also great opportunities for SM physics
 - \triangleright Improve sensitivity of $\nu_{ au}$ -physics by $\mathcal{O}(1000)$
- Recognized as an experiment by CERN since May 2016


Accelerator schedule	2015	2016	2017	2018	2019	2020		2021	2022	2023	2024	2025		2026	2027
LHC		Run	2		LS	2			Run 3			LS3			Run 4
SPS											NA stop	SPS sto	p		
				_											
Detector		R&D, design a	nd C,DR		PRR			Productio	n		Installat	ion			
Milestones	TP		_	<mark>C,DR</mark>										CwB	Data taking
Facility	Integration														
Civil engineering	Pre-construction				Target - Detector hall - Beamline - Junction (WP1)						CwB:				
Infrastructure	Installation Installation Inst. Commissioni						issioning								
Beamline		R&D, desi	gn and C,DR				•	- Productio	n→		Install	ation		with b	eam
Target complex		R&D,	design and C	,DR		← P	rodu	uction \rightarrow		In	stallation				
Target			R&D, desi	gn and (C,DR + proto	yping			1	Productior	n In	stallation			


- Next step: Conceptual Design Report in 2018
 Input for the European strategy for particle physics
- Begin data taking in 2026

D. Bick (UHH)

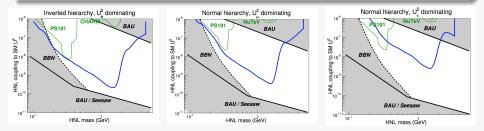
The People behind SHiP

- 6 Background
- 7 Sensitivities
- 8 Portals
- 9 SM Physics

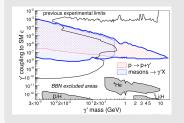
Background sources and rejection strategies

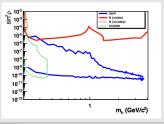
- $\nu\text{-}$ and $\mu\text{-}\text{induced}$ backgrounds
 - e.g inelastic $\nu\text{-interactions}$ in the surroundings of the HP detector
 - ▷ Reconstructed momentum must point back to proton target
 - ▷ Veto upstream the decay volume
 - Reconstructed vertex must be in decay volume
- Random combination of tracks
 - Rate at spectrometer: $7 \, \rm kHz/spill$
 - $\triangleright~$ Timing veto with a precision of $\mathcal{O}(100\,\mathrm{ps})$
 - $\triangleright~$ Surround background tagger and upstream veto detector
- Cosmic muons
 - Scattering/DIS on cavern and vessel walls
 - $\triangleright~$ Surround background tagger and upstream veto detector
 - Event topology, pointing of momentum
- Backgrounds have been investigated in extensive MC studies.
- $\triangleright~$ Overall expected background: less than 0.1 events in 5 years

D. Bick (UHH)


Background source	Statistical factor	Expected background
$\nu \ (p > 10.0 \ {\rm GeV/c})$	35.	< 0.07
$\nu \ (4.0 \ {\rm GeV/c}$	~ 1	0 (MC)
$\nu \ (2.0 \ {\rm GeV/c}$	0.07	0 (MC)
μ DIS HS	~ 1	0 (MC)
μ DIS wall	0.001	0 (MC)
μ Combinatorial	10^{4}	< 0.1
μ Cosmics ($p < 100 \text{ GeV/c}$)	0.2	0 (MC)
μ Cosmics ($p > 100 \text{ GeV/c}$)	800.	< 0.1
μ Cosmics DIS ($p > 100 \text{ GeV/c}$)	10^{3}	< 0.1
μ Cosmics DIS (10 GeV/c< $p < 100$ GeV/c)	~ 1	0 (MC)

Neutrino Portal


- HNLs: 120 events expected for $m_{N_{2,3}}=1\,{
 m GeV}$
- SHIP will scan most of the cosmologically allowed region below the charm mass
- BAU constraint is model-dependent

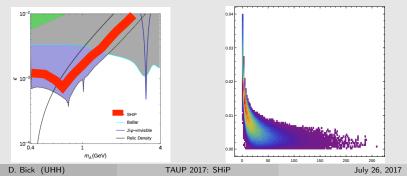

Vector Portal (Dark Photons)

- U(1) associated particle γ' in HS that can have non-zero mass and mix with the SM photon with ε
- Produced in QCD processes or in decays of $\pi^0 \rightarrow \gamma' \gamma$, $\eta \rightarrow \gamma' \gamma$, $\omega \rightarrow \gamma' \pi^0$ and $\eta' \rightarrow \gamma' \gamma$

Scalar Portal

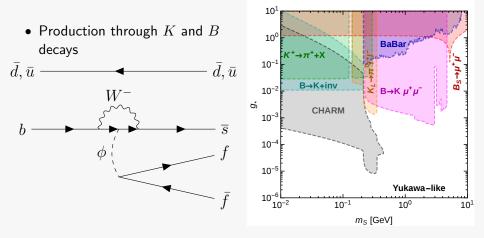
- Mostly produced in penguin-type *B* and *K* decays
- Can mix with the SM Higgs with $\sin^2\theta$

UHI


21

Light Dark Matter production

- Decay of dark photon A created n the beam dum produces DM particle χ


LDM in the emulsion spectrometer

- Detection through elastic scattering on electrons and nuclei
- Background from ν elastic scattering: about 300 events expected

$$\begin{split} &\frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx \ dy} = \\ &\frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) y \right] F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5 \end{split}$$