Untersuchung des Verhaltens von CdZnTe-Detektoren in Flüssigszintillator für das COBRA-Experiment

Christian Oldorf für die COBRA-Kollaboration

Universität Hamburg Institut für Experimentalphysik

DPG Frühjahrstagung, Münster 2011

Inhalt

COBRA–Detektorkonzepte

- Pixel-Detektoren
- Coplanar–Grid–Detektoren
- 2 Betrieb in Flüssigszintillator
- 3 Zusammenfassung und Ausblick

2

Detektoren aus Cd(Zn)Te

2035

- Ziel der COBRA-Kollaboration:
 - Aufbau eines Experiments mit 400 kg Quellmaterial
 - Sensitivität auf Halbwertszeiten $T_{rac{1}{2}} > 10^{26}$ Jahre
- "Quelle = Detektor"→ große Masse und hohe Nachweiseffizienz einfacher erreichbar
- Halbleiter \rightarrow gute Energieauflösung, sehr rein in Bezug auf Radionuklide
- Arbeitsbereich von -10°C bis $+35^\circ\text{C}$
- Kommerzielle Entwicklung und schnelle Verfügbarkeit

Detektoren aus Cd(Zn)Te

20135

- Ziel der COBRA-Kollaboration:
 - Aufbau eines Experiments mit 400 kg Quellmaterial
 - Sensitivität auf Halbwertszeiten $T_{rac{1}{2}}>10^{26}$ Jahre
- "Quelle = Detektor"→ große Masse und hohe Nachweiseffizienz einfacher erreichbar
- Halbleiter \rightarrow gute Energieauflösung, sehr rein in Bezug auf Radionuklide
- Arbeitsbereich von -10°C bis $+35^\circ\text{C}$
- Kommerzielle Entwicklung und schnelle Verfügbarkeit

Detektorkonzepte:

Pixeldetektoren

Pixeldetektoren

- Tracking \rightarrow "Solid state TPC"
- Massive Untergrundreduktion durch Teilchenidentifikation

Pixeldetektoren

2 CONS

- Tracking \rightarrow "Solid state TPC"
- Massive Untergrundreduktion durch Teilchenidentifikation

Insgesamt werden/wurden 3 Systeme getestet:

- Timepix Pixel System:
 - $14 \times 14 \times 1 \text{ mm}^3 \text{ CdTe}$
 - 14×14×0.3 mm³ Si
 - jeweils mit 256 \times 256 oder 128 \times 128 Pixeln
- WUSTL Pixel System:
 - $20 \times 20 \times 10 \text{ mm}^3 \text{ CdZnTe}$
 - 8×8, 32×32 oder 100×100 Pixel
- Polaris–System:
 - $20 \times 20 \times 15 \text{ mm}^3 \text{ CdZnTe}$, 36 g
 - 11×11 Pixel, bis zu 40 Schichten in z-Richtung durch Driftzeitunterschiede

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Beispiel: Timepix

• Si-Timepix Detektor

• 256×256 Pixel, 55µm Pixelabstand

UH

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Beispiel: Polaris

- Weltgrößter CdZnTe-Detektor
- Nicht auf Low–Background optimiert
- Untergrund von 0.9 counts/keV/kg/yr

- werden im momentanen Versuchsaufbau am LNGS hauptsächlich verwendet
- großvolumige Detektoren $(1 \text{ cm}^3, \text{ bis zu } 2 \text{ cm}^3 \text{ erhältlich})$
- Kompensation des Löchersignals (Trapping) durch Auslese zweier Anoden
- benötigt wenig Auslesekanäle
- Energieauflösung von unter 2 % FWHM in der ROI erreicht

Coplanar–Grid–Detektoren

Upgrade in 2011:

- Neuer Standort am LNGS (ehemaliges HdM–Gebäude)
- 64 CdZnTe-Detektoren mit 1 cm³ (0.42 kg)
- Auslese per FADC (Pulsshape)
- Verbesserte Abschirmung und neue DAQ

Passivierung der CPG-Detektoren

Die Passivierung

- schützt das CdZnTe vor Degradierung
- verhindert mechanische Schäden des Detektors und der empfindlichen Anoden

8

Passivierung der CPG-Detektoren

Die Passivierung

- schützt das CdZnTe vor Degradierung
- verhindert mechanische Schäden des Detektors und der empfindlichen Anoden

Vorteile einer Passivierung mit Flüssigszintillator:

- im Allgemeinen sehr hochohmig \rightarrow guter Isolator
- Funktion als aktives Veto
- hohe Reinheit in Bezug auf radioaktive Substanzen möglich
 → siehe z.B. BOREXINO oder KamLAND
- einfache Kontrolle der Temperaturstabilität möglich
- verbessert den Nachweis von Zerfällen in angeregte Zustände

Versuchsaufbau

- Betrieb mit Flüssigszintillator oder Stickstoff
- Zwei PMTs in Koinzidenzschaltung als Myon–Veto

Versuchsaufbau

$1 \, \text{cm}^3$ CdZnTe, unpassiviert:

Detektorhalterung und Vorverstärker–Elektronik wurden von der TU Dortmund entwickelt und zur Verfügung gestellt

Vergleich der Untergrundspektren

Untergrundspektren des CdZnTe–Detektors in verschiedenen Umgebungen:

Universität Hamburg

Vergleich in der Region of Interest

	Counts [1/keV/kg/Tag]	
Energie [keV]	Flüssigszintillator	Flüssigszintillator + Veto
2753-2865	47.9	4.9

Reduktion in der ROI (2809 keV $\pm\,2\%$) um eine Größenordnung

Zusammenfassung

- CdZnTe–Detektoren lassen sich bei gleichbleibender Energieauflösung in Flüssigszintillator betreiben
- Der Einsatz von Flüssigszintillator als aktives Veto reduziert erheblich die Rate an Untergrundsignalen

Zusammenfassung

- CdZnTe–Detektoren lassen sich bei gleichbleibender Energieauflösung in Flüssigszintillator betreiben
- Der Einsatz von Flüssigszintillator als aktives Veto reduziert erheblich die Rate an Untergrundsignalen

Ausblick:

- Erweiterung des Versuchsaufbaus auf 8 Detektoren ist in Vorbereitung
 - $\bullet \ \rightarrow \text{höhere Statistik}$
 - $\bullet \ \rightarrow \ {\sf Koinzidenzanalyse}$
 - $\bullet \ \rightarrow \ \mathsf{Erkenntnisse} \ \mathsf{\ddot{u}ber} \ \mathsf{die} \ \mathsf{Langzeitstabilit\ddot{a}t}$
- Aufbau des Versuchs im Untergrundlabor (Dresden, LNGS)

Vielen Dank für Ihre Aufmerksamkeit!

Betrieb von CdZnTe-Detektoren in Flüssigszintillator 25.03.20

25.03.2011 13

14

¹³⁷Cs in Stickstoff

Energieauflösung: 5.0% FWHM @ 662 keV

¹³⁷Cs in Flüssigszintillator

Verwendeter Flüssigszintillator: Optiscint Hisafe Energieauflösung: 5.1% FWHM @ 662 keV

