Neutrinophysics with Liquid Scintillator LEXI Meeting 2012

Daniel Bick

October 12, 2012

2 (Some) Activities in our Group

- Borexino
- LENA
- Tracking

Why do we need neutrino detectors?

- To better understand astrophysical an terrestrial ν sources.
- To investigate neutrino properties.
- As a target for a neutrino beam.
- KamLAND and Borexino show the outstanding physics potential of liquid scintillator for neutrino detection.
- $\, \bullet \,$ Increase detection sensitivity and precision $\, \rightarrow \,$ higher target masses.
- A large LS detector addresses a large range of physics!

Physics with Liquid Scintillator

Neutrino Physics

- Galactic supernova neutrinos
- Diffuse supernova ν background
- Solar neutrinos
- Geoneutrinos
- Reactor neutrinos
- Neutrino oscillometry
- Neutrino beams
- Atmospheric neutrinos
- π decay @ rest beam

Also

- Indirect dark matter search
- Proton decay

D. Bick (UHH)

Detection channels

- $\begin{array}{ll} \nu: & \mbox{elastic scattering } \nu + e^- \rightarrow \nu + e^- \\ & \mbox{proton recoil } \nu + p \rightarrow p + \nu \\ & \mbox{reactions on } ^{12}\mbox{C (NC and CC)} \end{array}$
- $ar{
 u}_e$: inverse eta-decay $ar{
 u}_e + p
 ightarrow e^+ + n$

Advantages of LS

- very low energy threshold ($\approx 200\,{\rm keV})$
- good energy resolution ($\approx 7\%$ @ $1\,\text{MeV})$
- proven purification techniques for high radiopurity

Background rejection

- pulse shape analysis
- coincidence signals

UHH

The Borexino Experiment

UHI

Real time spectroscopic neutrino detection using LS

Taking data since May 2007:

- Solar neutrinos
 - ⁷Be neutrinos
 - ⁸B neutrinos
 - *pep* neutrinos
 - CNO neutrinos
- Geo neutrinos
- Supernova neutrinos (SNEWS)

Phase II:

- Precision measurements
- Sterile neutrinos

Neutrino Energy in MeV

The Borexino Experiment

UHI

Real time spectroscopic neutrino detection using LS

Taking data since May 2007:

- Solar neutrinos
 - ⁷Be neutrinos √
 - ⁸B neutrinos √
 - *pep* neutrinos √
 - CNO neutrinos
- Geo neutrinos √
- Supernova neutrinos (SNEWS)

Phase II:

- Precision measurements
- Sterile neutrinos

Neutrino Energy in MeV

D. Bick (UHH)

Laboratori Nationali del Gran Sasso

υн

Borexino Detector Setup

Outer Detector

2100 tons ultra pure water

- Active shielding
- 208 PMTs \Rightarrow Cherenkov veto

Steel dome: $18 \text{ m} \varnothing - 16.9 \text{ m}$ high

UH

Шi

Inner Detector

278 tons of liquid scintillator in nylon vessel (\emptyset 8.5 m) (125 μ m)

- Detector = target
- Organic scintillator: pseudocumene (PC, C₉H₁₂)
- $\circ~\sim 1.5\,{
 m g/l}$ PPO

Two buffer layers

- Same liquid
- Light quencher DMP

stainless steel sphere (\emptyset 13.7 m) holding 2212 inward facing PMTs

Neutrino Detection

• Neutrino detection via elastic scattering on electrons in the scintillator $\nu_e + e^- \rightarrow \nu_e + e^-$

UH

Compton-like energy transfer to electron

• Anti neutrino detection via inverse β -decay

 $p + \bar{\nu}_e \rightarrow e^+ + n$

Delayed coincidence form e^+e^- -annihilation and neutron capture

Borexino Achievements (Solar)

day)]

10

D. Bick (UHH)

Solar ν fluxes

1600

Borexino Achievements (Terrestrial)

D. Bick (UHH)

 ν in Liquid Scintillator

Ш

UHI #

About one year ago...

OPERA reports hints for a neutrino velocity > c.

- Then they found a loose cable connection was this the error?
- Need a lot of statistics or bunched beam for new measurement
- Quick check: relative timing between Borexino and OPERA

Comparison of CNGS Timestamps

- Independent of any delays 0
- No need to know exact μ path statistics cancel out uncertainties •

Time Difference between Borexino (corrected) and OPERA

D. Bick (UHH)

 ν in Liquid Scintillator

UΗ

Шi

Results

D. Bick (UHH)

Before 2012 vs. First Week of 2012

- average offset 2008 to 2011: $(-6697.0 \pm 2.0) \text{ ns}$
- offset first week 2012 run: $(-6798.1 \pm 18.5) \,\mathrm{ns}$
- \Rightarrow shift of OPERA clock to larger values

shift: (101.1 ± 18.6) ns

UН

Ĥ

LENA Detector Design

D. Bick (UHH)

LENA Detector

UΗ

LENA Detector

υн

LENA Detector

LENA vs. Elbphilharmonie • slightly larger • slightly cheaper υн

Ĥ

Possible Beam from CERN

UHI

Long Baseline Neutrino Beam

- 2288 km from CERN to Pyhäsalmi
- conventional beam: $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- large distance ⇒ matter effects
- u_{μ} and $\bar{
 u}_{\mu}$ mode

CERN

Pyhäsalmi

Possible Beam from CERN

Long Baseline Neutrino Beam

- 2288 km from CERN to Pyhäsalmi
- conventional beam: $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- large distance ⇒ matter effects

CERN

To determine mass hierarchy

- Look for ν_e appearance in ν_μ beam
- Challenge: Discriminate ν_e CC events from NC π^0 events
- Multivariate analysis
- MC studies: 38% signal eff. with 11% remaining BG

Background rejection versus Signal efficiency TMV Background rejection 0.9 0.8 0.7 0.6 0.5 0.4 A Method: 0.3 BDT 0.2 0 5 0 6 0.7 0.8 0.9 Signal efficiency

Next Steps

- Pulse shape analysis
- Tracking

- homogeneous light emission in liquid scintillator
- \Rightarrow no directional information

BUT

- tracks of a few 10 cm:
- distortion in first photon light front
- Cherenkov-like, $50 \times$ more light

Monte Carlo Events

Event Reconstruction

A New Approach

- Reference point R on track
 (t = 0)
- For a photon at PMT:

 $a + nb = ct_{pmt}$

- All possible paths: drop like
- (Binned) superposition of drops for all PMTs
- Find bins with significant overlap of drops
- \Rightarrow reflects events spatial topology

A New Approach

- Reference point *R* on track (t = 0)
- For a photon at PMT:

 $a + nb = ct_{pmt}$

- All possible paths: drop like
- (Binned) superposition of drops for all PMTs
- Find bins with significant overlap of drops
- \Rightarrow reflects events spatial topology

Test on Borexino Data

Very Preliminary Results compared to BX Tracking

Angular resolution achieved: 10° after only a few weeks of effort. A lot of potential for optimizations (reference point finding, fitting, ...)

D. Bick (UHH)

 ν in Liquid Scintillator

October 12, 2012

25 / 27

Mass Hierarchy

26 / 27

- Sensitivity plots created using GLoBES.
- 10 years <u>of beam (5ν, 5ν</u>).

- Liquid scintillator is optimal for neutrino detection in the MeV range.
- Rich physics program includes SN neutrinos, solar neutrinos, geo neutrinos, reactor neutrinos, neutrino oscillometry ...
- Borexino has successfully measured the solar neutrino flux to 5% precision!
- For more precision we need a larger detector...
- ...which could also be used for high energy neutrino physics!
- Significant progress has been achieved with tracking in the GeV Range.
- Mass hierarchy can be determined at $>7\sigma$

Detection of Solar Neutrinos

