

The OPERA Experiment Concluding the Neutrino Oscillation Analysis

Annika Hollnagel

(annika.hollnagel@desy.de)

for the OPERA-Hamburg Working Group

Hamburg University Institute for Experimental Physics

DPG-Frühjahrstagung 2017, Münster

bmb+f - Förderschwerpunkt OPERA

Großgeräte der physikalischen Grundlagenforschung

Neutrino oscillation in disappearance mode:

- First observation: SuperKamiokande, MACRO...
- Further studies: SNO, K2K, MINOS...

Neutrino oscillation in appearance mode:

Observation needed to establish the picture of neutrino oscillations

Solar scale:

• $\nu_e \rightarrow \nu_\mu$: Below threshold for μ production

Atmospheric scale:

- $u_{\mu} \rightarrow \nu_{\tau}$: u_{μ} from cosmic rays (SK, IceCube, ORCA)
- $\nu_{\mu} \rightarrow \nu_{\tau}$: ν_{μ} from long-baseline beams OPERA: Event-by-event τ lepton identification
- $\nu_{\mu} \rightarrow \nu_{e}$: Sub-leading (T2K, OPERA)

The **OPERA** Experiment

The OPERA experiment in the CERN to Gran Sasso neutrino beam, JINST **4** (2009) P04018

OPERA: Oscillation Project with Emulsion Tracking Apparatus

- Appearance search: Direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations detection of τ production & decay
- Characteristic 'kink' topology:

- ν beam: High-intensity & high-energy long-baseline ν_{μ} beam
- **Detector:** Large target mass, high precision $\mathcal{O}(\mu m)$
- Location: Laboratori Nazionali del Gran Sasso (LNGS) 1400 m rock coverage, 3800 m w.e.

The CNGS ν_{μ} Beam

CNGS: CERN Neutrinos to Gran Sasso (2008 - 2012)

p.o.t. (total)	$17.97 imes 10^{19}$	
ν interactions	19505	

45 50 E (GeV)

v_n fluence

10 15 20 25 30 35 40

100

Hamburg University

Ш

The OPERA Detector

Hybrid detector (ED & ECC):

- 2 identical Super Modules (SM) + VETO system
- Spectrometer: RPC & XPC, PT
- Target Area: TT, ECC bricks

Ш

The OPERA Detector

Emulsion Cloud Chamber (ECC) bricks:

- 57 \times 2 AgBr nuclear emulsions on plastic bases, interleaved with 56 lead plates (\sim 10 $X_0)$
- Total: $~\sim 150\,000\,\times 8.3\,{\rm kg}~~\sim 1.25\,{\rm kt}$ total target mass
- Spatial / angular resolution: $\sim 1 \,\mu m$ / $\sim 2 \,mrad$

Ш

Changeable Sheets (CS):

• 2 extra nuclear emulsion sheets per brick

Target Tracker (TT) detectors:

• Plastic scintillator strips (horizontal & vertical), 31 walls per SM

The OPERA Detector

Magnetic Spectrometer:

- Downstream of each target area
- Magnets: Iron core dipole, 1.55 T
- RPC, XPC: Resistive plate chambers
- Precision Tracker (PT): $\sim 10\,000$ drift tubes

UН

Event Reconstruction

ED event reconstruction:

- Time resolution: $\mathcal{O}(ns)$
- μ identification, charge & momentum measurement
- Hadronic shower energy reconstruction
- ν interaction brick localisation
- > Trigger: ECC event reconstruction

Event Reconstruction

ECC event reconstruction:

- Spatial resolution: $\mathcal{O}(\mu m)$
- 3D track segment & track reconstruction
- ν interaction vertex localisation
- τ decay search procedure:
- ▷ kink angle / IP measurement, parent / daughter search...
- Momentum measurement via MCS

Oscillation Analysis: $\nu_{\mu} \rightarrow \nu_{\tau}$

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA experiment, Physical Review Letters **115**, 121802 (2015)

The 1st ν_{τ} Candidate Event:

- 1ry vertex: 7 tracks
- au candidate: 1-prong decay after $(1335 \pm 35) \, \mu \mathrm{m}$
- \triangleright Decay channel: $\tau \rightarrow h$

The Following 4 ν_{τ} Candidates

💾 Hamburg University

UH

28.03.2017 The OPERA Experiment

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Analysis

Previous data sample (2008 – 2012): 5408 DS events

- 1st & 2nd most probable bricks
- All 0 μ events & 1 μ events with $p_{\mu} < 15\,{\rm GeV/c}$

τ decay	Signal	Total BG	Data
channel	(exp.)	(exp.)	(obs.)
	$\Delta m_{23}^2 = 2.44 \mathrm{meV}^2$		
	$\sin^2 2 heta_{23} = 1$		
au ightarrow 1 h	0.52 ± 0.10	$\textbf{0.04} \pm \textbf{0.01}$	3
au ightarrow 3h	$\textbf{0.73} \pm \textbf{0.14}$	0.17 ± 0.03	1
$\tau \to \mu$	0.61 ± 0.12	0.004 ± 0.001	1
$\tau \to \mathbf{e}$	0.78 ± 0.16	$\textbf{0.03} \pm \textbf{0.01}$	0
Total	2.64 ± 0.53	0.25 ± 0.05	5

Discovery of ν_{τ} appearance:

- p-value: 1.10×10^{-7} (Fisher) / 1.07×10^{-7} (profile likelihood)
- \triangleright No-oscillation hypothesis excluded @ 5.1σ

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Analysis

Final data sample (2008 – 2012): 5603 DS events

- 1st & 2nd most probable bricks
- All 0 μ events & 1 μ events with $p_{\mu} < 15\,{
 m GeV/c}$
- Increased statistics: +195 DS events

Minimum bias analysis:

- Loosened kinematical cuts
- Boosted Decision Trees (kin. & topol. variables)
- Improved signal-to-noise ratio
- Increased statistics:

\triangleright 5 new ν_{τ} candidates

Measurement of Δm_{23}^2 in appearance mode:

- $N_{\nu_{\tau}} \propto (\Delta m_{23}^2)^2 L^2 \int \Phi(E) \epsilon(E) \frac{\sigma(E)}{E^2} dE$
- $\Delta m_{23}^2 = 2.95 \times 10^{-3} \,\mathrm{eV}^2$ ([1.98 3.95] $\times 10^{-3} \,\mathrm{eV}^2$) PRELIM. for $\sin^2(2\theta_{23}) = 1$ at 90 % C.L. (F&C)

Oscillation Analysis: $u_{\mu} \rightarrow \nu_{e}$

Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations with the OPERA experiment in the CNGS beam, JHEP **1307** (2013) 004

ECC reconstruction:

UΗ

Systematic ν_e Event Selection

CS em shower hints:

- Interpolation of 1ry vertex tracks to CS
- Expanded scan volume
- Analysis of downstream bricks

Backgrounds:

- ν_e from intrinsic beam contamination
- e^+e^- from π^0 decays misidentified as single-e
- u_{τ} CC interactions with $\tau \rightarrow e$

ν_e Oscillation Analysis

Final data sample (2008 – 2012): 1185 events

Contribution	Expected events 17.97×10^{19} p.o.t.	
Beam contamination	30.8	
au ightarrow e	0.9	
π^0	0.5	
$\nu_{\mu} \rightarrow \nu_{e}$	2.7	
Total	34.9	
Observed	34	
PRELIMINARY		

3+1 energy shape analysis:

$$\sin^2 2\theta_{\mu e} = 4|U_{\mu 4}|^2|U_{e4}|^2$$

UH

Conclusion & Outlook

$u_{\mu} ightarrow u_{ au}$ oscillation analysis: Standard analysis

- 5 ν_{τ} candidate events observed (0.25 BG events expected)
- \triangleright Discovery of ν_{τ} appearance @ 5.1 σ

Outlook: $\nu_{\mu} \rightarrow \nu_{\tau}$ **Minimum bias analysis**

- Improved statistics and signal-to-noise ratio
- ▷ Measurement of Δm_{23}^2 in appearance mode
- $\triangleright \quad \textbf{Measurement of } \nu_{\tau} \text{ cross section}$
- > Sterile neutrino analysis

Outlook: $\nu_{\mu} \rightarrow \nu_{e}$ analysis (full data sample)

- Improved statistics and analysis method
- ▷ Sterile neutrino analysis: 3+1 energy shape analysis
- ▷ 3-flavour neutrino analysis

Conclusion & Outlook

Further studies:

- Combined analysis: $\nu_{\mu} \rightarrow \nu_{\tau}, \nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}$
- 0µ double decay event
- Charged particle multiplicity distributions
- Annual μ rate modulation

Future experiments:

- Improved nuclear emulsions & scanning techniques:
- $\triangleright~$ Muon radiography, directional DM search, γ telescopes...

• SHiP:

- OPERA-like ECC bricks
- Drift tubes
- JUNO:
- OPERA RPC

Thank you for your attention!

11 countries, 28 institutes, 140 physicists...

