### <u>Neue Ergebnisse der Neutrinophysik</u> <u>DPG Aachen</u>

Caren Hagner Virginia Tech

2002 großes Jahr in der Neutrinophysik!

April: Dezember: **SNO** KamLAND Flavoränderung Oktober: Reaktor bei solaren Nobelpreis Neutrinos Neutrinos Homestake LMA-Lösung Kamiokande

DPG Aachen, 10.März 2003

## Neutrinomassen und Neutrinomischung

3 massive Neutrinos:  $v_1$ ,  $v_2$ ,  $v_3$  mit Massen:  $m_1 < m_2 < m_3$ 

Flavor-Eigenzustände ≠ Massen-Eigenzustände

$$egin{pmatrix} {v}_e \ e^- \end{pmatrix} egin{pmatrix} {v}_\mu \ {\mu}^- \end{pmatrix} egin{pmatrix} {v}_ au \ { au}^ au \end{pmatrix}$$

$$\begin{pmatrix} v_1 \\ e^- \end{pmatrix} \begin{pmatrix} v_2 \\ \mu^- \end{pmatrix} \begin{pmatrix} v_3 \\ \tau^- \end{pmatrix}$$

Neutrinomischung!

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

DPG Aachen, 10.März 2003

## Parametrisierung der Neutrinomischung

### Neutrino-Mischungsmatrix:

- 3 Mischungswinkel:  $\theta_{12}$ ,  $\theta_{23}$ ,  $\theta_{13}$
- 1 CP-verletzende Dirac-Phase: δ



Im Fall von Majorana Neutrinos zusätzlich: • 2 CP-verletzende Majorana-Phasen

## Experimentelle Methoden

Neutrinooszillationen: Mischungswinkel, o Massendifferenzen Absolute Masse **B-Zerfall: BB-Zerfall:** Majorana-Teilchen? Absolute Masse (Majorana Phase) Kosmologie (CMBR): Absolute Masse

## Neutrinooszillationen: Vakuum (2 Flavors)

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

 $\frac{\text{Überlebenswahrscheinlichkeit:}}{P(v_e \rightarrow v_e)} = 1 - \sin^2(2\theta) \cdot \sin^2\left(\frac{\Delta m_{21}^2}{2} \cdot \frac{L}{E_v}\right)$ 

$$\Delta m_{21}^2 = m_2^2 - m_1^2$$



DPG Aachen, 10.März 2003

## Solare Neutrinos

 $4p \rightarrow \text{He}^4 + 2e^+ + 2v_e + 26.7 \text{ MeV}$ 





Seit ≈ 1970

$$\nu_e + \mathrm{Cl}^{37} \rightarrow \mathrm{Ar}^{37} + e^{-7}$$

E<sub>v</sub> > 814 keV

$$R_{exp} = 0.34 \times SSM$$

## Das solare Neutrinorätsel



DPG Aachen, 10.März 2003

## Neutrinooszillationen in Materie

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} v_{1m} \\ v_{2m} \end{pmatrix}$$
$$\sin(2\theta_m) = \frac{\sin(2\theta)}{\sqrt{(X - \cos(2\theta))^2 + \sin^2(2\theta)}}$$
$$X = 1.52 \cdot 10^{-7} \cdot \frac{E[\text{MeV}] \cdot Y_e \rho[\text{g/cm}^3]}{(m_2^2 - m_1^2)[\text{eV}^2]}$$

Resonanz fürX =  $cos(2\theta)$ Im Inneren der Sonne: $\theta_m = 90^\circ$ An der Oberfläche: $\theta_m = \theta$ 



DPG Aachen, 10.März 2003

## Beste Erklärung: Neutrinooszillationen

#### Stand letzte DPG-Tagung, Frühjahr 2002



DPG Aachen, 10.März 2003

### SNO: Sudbury Neutrino Observatory

### Target sind 1000t $D_2O$

Messung des <sup>8</sup>B-Flusses *CC* (geladener Strom):  $v_e$ ES (elast. Streuung):  $v_e$ ,  $(v_{\mu/\tau})$ NEUL NC (neutraler Strom):  $v_e + v_{\mu} + v_{\tau}$ 

Creighton Nickel-Mine in Sudbury Canada

## <u>SNO: NC</u>

 NC: v<sub>x</sub> + d → p + n + v<sub>x</sub> (E<sub>v</sub>>2.2MeV)
 Gleicher WQ für v<sub>e</sub>, v<sub>µ</sub>, v<sub>τ</sub>
 Messung des gesamten <sup>8</sup>B-Neutrinoflusses

Neutronennachweis: Phase1:  $n + d \rightarrow t + \gamma(6.25 MeV)$ bisherige Resultate!

Phase2:  $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma's(8.6MeV)$ seit Juni 2001



## SNO: CC und ES

CC: v<sub>e</sub> + d → p + p + e<sup>-</sup> (E<sub>v</sub> > 1.4MeV)
 Nur sensitiv auf v<sub>e</sub>
 Messung des v<sub>e</sub> Energiespektrums

ES: 
$$v_{e\mu\tau} + e^- \rightarrow v_{e\mu\tau} + e^-$$
  
 $\sigma(v_{e}, e) \approx 5 \times \sigma(v_{\mu\tau}, e)$   
Auch in Super-K  
(KamLAND-solar, Borexino)



## SNO: Solarer <sup>8</sup>B-Neutrinofluss



DPG Aachen, 10.März 2003



Anzahl der <sup>8</sup>B-Neutrinos wie vom SSM vorausgesagt! 1/3 erreichen den Detektor als v<sub>e</sub> 2/3 erreichen den Detektor als v<sub>µ</sub> oder v<sub>т</sub>



DPG Aachen, 10.März 2003

## Analyse der solaren Neutrinoexperimente

#### Stand nach SNO Ergebnis, Sommer 2002



DPG Aachen, 10.März 2003

# <u>Reaktorneutrino-Experiment</u> <u>KamLAND</u>



LMA-Test mit Reaktor-(Anti)-Neutrinos

#### Mittlere Entfernung der Reaktoren von Kamland: 175km

$$L_{osz}^{vac}[m] = \frac{2.48 \cdot E_{v}[MeV]}{\Delta m^{2}[eV^{2}]}$$

Caren Hagner, Virginia Tech

DPG Aachen, 10.März 2003

## Nachweis der Reaktor-Antineutrinos



DPG Aachen, 10.März 2003

### KamLAND: Energiespektrum



DPG Aachen, 10.März 2003

Caren Hagner, Virginia Tech

### **Reaktorneutrino-Experimente**



## Analyse: Solare Neutrinos + KamLAND



Analyse KamLAND-Koll. Phys. Rev. Lett. 90 (2003) 021802

Analyse Maltoni, Schwetz, Valle

#### Solare/Reaktor Neutrinos: Status

Flavor-Umwandlung  $v_e \rightarrow v_{\mu/\tau}$ 

Beste Erklärung: Neutrinooszillationen in Materie

Mischung nicht maximal! Vorzeichen von ∆m²<sub>21</sub> bestimmt

LMA (best fit):

 $tan^2 \Theta_{sol} \approx 0.46$ 

 $\Delta m^2_{21} \approx 7 \times 10^{-5} \text{ eV}^2$ 

#### Solare/Reaktor Neutrinos: Zukunft

- KamLAND-Reaktor: höhere Statistik
- Neues Reaktorexperiment mit geeigneter Distanz
  - $\longrightarrow$  Oszillationsmuster, Genauigkeit  $\Delta m_{sol}^2$  und  $\theta_{sol}$

Test des Standard Sonnenmodells und Test des Materieeffekts:

<sup>7</sup>Be-Fluss: (0.64 ± 0.03) × SSM
 KamLAND-Solar und BOREXINO

• pp-Fluss: GNO, LENS

## Atmosphärische Neutrinos



$$P(\nu_{\mu} \rightarrow \nu_{x}) = \sin^{2} 2\theta_{atm} \sin^{2} \left(\frac{1.27\Delta m_{atm}^{2}L}{E_{\nu}}\right)$$

DPG Aachen, 10.März 2003

## Kamiokande Experiment:

## Nobelpreis 2002



## 50kton Super-Kamiokande Detektor



DPG Aachen, 10.März 2003

### SuperK - atmosphärische Neutrinos



DPG Aachen, 10.März 2003

## <u>Atmosphärische Neutrinos:</u> <u>Analyse Neutrinooszillationen</u>



Bestätigt durch MACRO, SOUDAN

DPG Aachen, 10.März 2003

 $\begin{array}{l} \underline{Atmosphärische Neutrinos: Resultate}\\ Disappearance von v_{\mu} (Zenithwinkel abh.)\\ Bester fit für v_{\mu} \rightarrow v_{\tau} Oszillationen\\ v_{\mu} \rightarrow v_{e} Oszillationen von CHOOZ Exp. ausgeschlossen\\ Vorzeichen von \Delta m^{2}_{23} unbekannt! \end{array}$ 



DPG Aachen, 10.März 2003

## **K2K Beschleuniger Experiment**



DPG Aachen, 10.März 2003

## Long Baseline Beschleuniger Experimente: Zukunft

Appearance der Tau-Neutrinos: OPERA, Icarus (Cern → Gran Sasso)

Volles Oszillationsmuster: MINOS (Fermilab → Soudan), Icarus

Präzisionsmessung von  $\Delta m^2_{atm}$  und  $\sin^2 2\theta_{atm}$ : MINOS, Icarus JHF  $\rightarrow$  Super-K

## Was wissen wir über die Mischungsmatrix?

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_2 & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & \theta_{13}, \delta & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & s_{12} & 0 \\ -s_{12} & s_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Solare Neutrinos und Reaktorexperiment (Kamland):  $tan^2 \Theta_{sol} \approx 0.46$ 

Atmosphärische Neutrinos und Beschleuniger (K2  $sin^2 2\theta_{atm} \approx 1$ Unbekannt:  $\theta_{13}$ , CP-Phere **X** Grenze durch CHOOZ Rease Jagd nach  $\theta_{13}$  und  $\delta!$  $sin^2 2\theta_{TS}$ 

DPG Aachen, 10.März 2003



θ<sub>13</sub> in subdominanten Effekten bei "long baseline" Neutrinooszillations-Experimenten: Reaktor und Beschleuniger

#### Neutrino-Superbeams, Off-axis beams, Neutrino Factory

DPG Aachen, 10.März 2003

## LSND: Beam Dump Experiment



#### Überschuss gesehen!

Interpretation: stariles Neutrino

Verifizierung durch MiniBooNE/FNAL (läuft)

DPG Aachen, 10.März 2003

Bestimmung der Neutrinomasse

Super-K (atm. Neutrinos):  $\Delta m^2_{atm} = 2.5 \times 10^{-3} \text{ eV}^2$ 

 $\Rightarrow m(v_i) > 0.05 eV$ 

Das bestimmt die Energieskala bei der man suchen muss

DPG Aachen, 10.März 2003

## <u>Tritium B-Zerfall: Mainz/Troitsk</u>

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$



DPG Aachen, 10.März 2003

## Neutrinoloser Doppelbetazerfall



## Neutrinoloser Doppelbetazerfall



effektive Neutrinomasse im Ovßß-Zerfall:

$$\left\langle m \right\rangle_{\beta\beta} \equiv \left| \sum_{i=1}^{3} m_{i} U_{ei}^{2} \right|$$

 $\left\langle m^2 \right\rangle_{\beta} = \sum_{i} m_i^2 \left| U_{ei} \right|^2$ 

## **Doppelbeta-Experimente: Resultate**

 $\langle m \rangle_{\beta\beta} < 0.35 \,\mathrm{eV} \ (90\% \,\mathrm{CL})$ 

Heidelberg-Moskau Kollaboration, Eur.Phys.J. A12 (2001) 147 IGEX Kollaboration, hep-ex/0202026, Phys. Rev. C59 (1999) 2108

| Isotope             | $T_{1/2}^{0\nu}(y)$           | $\langle m_{\nu} \rangle ~(\mathrm{eV})$ |
|---------------------|-------------------------------|------------------------------------------|
| $^{48}Ca$           | $> 9.5 	imes 10^{21} (76\%)$  | < 8.3                                    |
| $^{76}\mathrm{Ge}$  | $>1.9	imes10^{25}$ HM-K       | < 0.35                                   |
|                     | $> 1.6 	imes 10^{25}$ IGEX    | < 0.33 - 1.35                            |
| $^{82}\mathrm{Se}$  | $> 2.7 \times 10^{22} (68\%)$ | < 5                                      |
| $^{100}\mathrm{Mo}$ | $>5.5	imes10^{22}$            | < 2.1                                    |
| $^{116}\mathrm{Cd}$ | $> 7 \times 10^{22}$          | < 2.6                                    |
| $^{128}\mathrm{Te}$ | $> 7.7 	imes 10^{24}$         | < 1.1 - 1.5                              |
| $^{130}\mathrm{Te}$ | $> 2.1 \times 10^{23}$        | < 0.85 - 2.1                             |
| $^{136}\mathrm{Xe}$ | $>4.4	imes10^{23}$            | < 1.8 - 5.2                              |
| $^{150}\mathrm{Nd}$ | $> 1.2 \times 10^{21}$        | < 3                                      |
|                     |                               |                                          |

alle 90%CL

# **Doppelbetazerfall:** Zukunft

| Experiment    | Isotope             | $T_{1/2}^{0\nu}$ | $\langle m_{\nu} \rangle$ |
|---------------|---------------------|------------------|---------------------------|
|               |                     | $(10^{26} y)$    | (meV)                     |
| CUORE[47]     | $^{130}\mathrm{Te}$ | 7                | 27                        |
| CUORICINO[47] | $^{130}\mathrm{Te}$ | 0.15             | 184                       |
| EXO[48]       | $^{136}\mathrm{Xe}$ | 8                | 52                        |
| GENIUS[49]    | $^{76}\mathrm{Ge}$  | 100              | 15                        |
| MAJORANA[50]  | $^{76}\mathrm{Ge}$  | 40               | 25                        |
| GEM[51]       | $^{76}\mathrm{Ge}$  | 70               | 18                        |
| MOON[52]      | $^{100}\mathrm{Mo}$ | 10               | 36                        |
| XMASS[53]     | $^{136}$ Xe         | 3                | 86                        |
| COBRA[54]     | $^{130}\mathrm{Te}$ | 0.01             | 240                       |
| DCBA[55]      | $^{150}\mathrm{Nd}$ | 0.15             | 190                       |
| NEMO 3[56]    | $^{100}\mathrm{Mo}$ | 0.04             | 560                       |
| CAMEO[57]     | $^{116}\mathrm{Cd}$ | > 1              | 69                        |
| CANDLES[58]   | $^{48}Ca$           | 1                | 158[15]                   |

### <u>Neutrinomasse aus kosmischer</u> <u>Hintergrundstrahlung (WMAP)</u>



## Zusammenfassung



Solare, Reaktor-Neutrinos/KamLAND:  $v_e \rightarrow v_{\mu/\tau}$  Oszillationen (LMA) Oszillationsmuster

Atmosphärische, Beschleuniger-Neutrinos/K2K:  $v_{\mu} \rightarrow v_{\tau}$  Vakuum Oszillationen Oszi

Masse des leichtesten Neutrinos:

 $<m>_{\beta} < 2.2 eV$  $<m>_{\beta\beta} < 0.35 eV$  $m_{v} < 0.23 eV$  β-Zerfall ββ-Zerfall CMBR-fit



Majorana?

Zukunft: Messung von  $\theta_{13}$ ,  $\delta$ Reaktor, Superbeams, Off-axis beams, Neutrinofactory

DPG Aachen, 10.März 2003



DPG Aachen, 10.März 2003