# Aspects on Neutrino (Mass-) and Mixing

Caren Hagner, Universität Hamburg

- Introduction: neutrino mass and mixing
- Neutrino Oscillation (I): mu tau mixing
  - atmospheric neutrinos
  - present neutrino beam experiments:
    - MINOS (NuMi beam: Fermilab Soudan Mine)
    - OPERA (CNGS beam: Cern LNGS)
- Neutrino Oscillation (II): e mu mixing
  - solar neutrino experiments
    - short review on past experiments (SNO)
    - Borexino
  - reactor experiment: KamLand
- Neutrino Oscillation (III): Future prospects (theta13 and CPV)
  - reactor experiments: Double Chooz and Daya Bay
  - off-axis (super)beams: T2K and NovA
  - neutrinofactory and beta beams
- Neutrino Oscillation (IV): Problems?
  - LSND / MiniBoone
  - GSI anomaly
  - NuTeV anomaly
- Nature of neutrino mass: Majorana or Dirac?
  - Double beta decay

### Neutrino Oscillations have been observed → Add Neutrino Mass & Mixing to SM



atmospheric neutrinos accelerator neutrinos

solar neutrinos

reactor neutrinos

# **Quark-Mixing**

Cabbibo-Kobayashi-Maskawa (CKM) Matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Lecture 1

1 phase: e<sup>iδ</sup>
 CP-violation





5'

b'

3 massive neutrinos:  $v_1$ ,  $v_2$ ,  $v_3$  with masses:  $m_1$ ,  $m_2$ ,  $m_3$ 

flavor-Eigenstates  $v_e, v_\mu, v_\tau \neq mass$ -Eigenstates



## **Historical remark**

- 1957-58: B. Pontecorvo proposed neutrino oscillations (because only v<sub>e</sub> was known, he thought of v ↔ anti-v)
   B. Pontecorvo, JETP 6, 429 (1957); B. Pontecorvo, JETP 7, 172 (1958).
- 1962 Maki, Nakagawa, Sakata described the 2 flavor mixing and discussed neutrino flavour transition.
   Z.Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
- 1967 full discussion of 2 flavor mixing, possibility of solar neutrino oscillations, question of sterile neutrinos
   by B. Pontecorvo.
   B. Pontecorvo, Zh. Eksp. Teor. Fiz. 53, 1717 (1967), and JETP 26, 984 (1968).



Therefore the neutrino mixing matrix is often called PMNS-Matrix

# Parametrisation of Neutrino Mixing(I)

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

- 3 mixing angles:  $\theta_{12}$ ,  $\theta_{23}$ ,  $\theta_{13}$
- 1 Dirac-phase (CP violating): δ



# Parametrisation of Neutrino Mixing (II)

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

- 3 Mixing angles:  $\theta_{12}$ ,  $\theta_{23}$ ,  $\theta_{13}$
- 1 Dirac-phase (CP violating): δ

### But:

If neutrinos are Majorana particles two additional phases exist: • 2 Majorana-Phases (CPV):  $\alpha_1$ ,  $\alpha_2$ 

$$\begin{bmatrix} v_e \\ v_\mu \\ v_\tau \end{bmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{i\alpha_1} & s_{13}e^{-i\delta}e^{i\alpha_2} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & [c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta}]e^{i\alpha_1} & s_{23}c_{13}e^{i\alpha_2} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & [-c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta}]e^{i\alpha_1} & c_{23}c_{13}e^{i\alpha_2} \\ \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

# Leptons vs Quarks



## What do we know about neutrino masses?



# **Neutrino Mixing for 2 Flavors**

$$\begin{vmatrix} v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{3} \end{pmatrix}$$
$$\begin{vmatrix} v_{\mu} \end{pmatrix} = \cos\theta_{23} |v_{2}\rangle + \sin\theta_{23} |v_{3}\rangle$$

We have measured that 
$$\theta_{23} \approx 45^{\circ}$$
:

$$\left|v_{\mu}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|v_{2}\right\rangle + \left|v_{3}\right\rangle\right) \qquad \left|v_{\tau}\right\rangle = \frac{1}{\sqrt{2}}\left(-\left|v_{2}\right\rangle + \left|v_{3}\right\rangle\right)$$

## General oscillation formula:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(1.27 \Delta m_{i j}^{2} \frac{L}{E}\right)$$
$$+ 2 \sum_{i>j} \Im(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin \left(2.54 \Delta m_{i j}^{2} \frac{L}{E}\right)$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2 \text{ in eV}^2$$
  
L in km  
E in GeV

# Neutrino Oscillations (23)

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

 $v_{\mu} \rightarrow v_{\tau}$  Oscillations

Atmospheric neutrinos & accelerator neutrinos



# **Oscillation of atmospheric neutrinos**

![](_page_13_Figure_1.jpeg)

![](_page_14_Picture_0.jpeg)

# SuperK – atmospheric neutrinos

![](_page_15_Figure_1.jpeg)

![](_page_16_Picture_0.jpeg)

# SuperKamiokande

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

# Neutrino beams: Principle

![](_page_17_Figure_1.jpeg)

- contamination from
- ν<sub>μ</sub> (≈6%), ν<sub>e</sub> (≈0.7%), ν<sub>e</sub> (≈0.2%)

• v<sub>τ</sub> ≤ 10<sup>-6</sup>

### **Technical Overview Conventional Neutrinobeams**

![](_page_18_Figure_1.jpeg)

| proton source      | experiments | E <sub>proton</sub> | pot/yr.               | Power   | Ε <sub>ν</sub> |
|--------------------|-------------|---------------------|-----------------------|---------|----------------|
| SPS                | OPERA       | 400 GeV             | 0.45*10 <sup>20</sup> | 0.12 MW | 25 GeV         |
| FNAL Main Injector | MINOS, NovA | 120 GeV             | 2.5*10 <sup>20</sup>  | 0.25 MW | 3-17 GeV       |
| J-PARC             | T2K         | 40-50 GeV           | 11*10 <sup>20</sup>   | 0.75 MW | 0.8 GeV        |

### Neutrino Beam: Target

![](_page_19_Figure_1.jpeg)

| neutrino beamline | experiments | material | Ø [mm] | lenght [cm] |
|-------------------|-------------|----------|--------|-------------|
| CNGS (SPS)        | OPERA       | graphite | 4-5    | 200         |
| NuMI (Fermilab)   | MINOS, NovA | graphite | 6.4    | 90          |
| J-PARC (KEK)      | T2K         | graphite | 12-15  | 90          |
| BoosterNeutrino   | MiniBooNe   | Be       | 10     | 60          |

![](_page_19_Picture_3.jpeg)

Caren Hagner, Universität Hamburg

![](_page_20_Picture_0.jpeg)

# The MINOS Experiment

![](_page_20_Figure_2.jpeg)

A large detector at Soudan

A smaller detector at Fermilab

Measure the beam and neutrino energy spectrum near the source

> See how it differs far away

![](_page_20_Figure_7.jpeg)

# Example of a disappearance measurement

Look for a deficit of  $v_{\mu}$  events at a distance...

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

# **MINOS Detectors**

### Near Detector (Fermilab): 1km

![](_page_22_Picture_4.jpeg)

### Far Detector (Soudan Mine): 735km

![](_page_22_Picture_6.jpeg)

1 kton, 4×5×15m 282 steel, 153 scintillator planes

5.4 ktons, 8×8×30m 484 steel/scintillator planes

![](_page_23_Picture_0.jpeg)

# **Event Topologies**

### **Monte Carlo**

![](_page_23_Figure_3.jpeg)

long µ track + hadronic activity **NC Event** 

![](_page_23_Picture_6.jpeg)

short event, often diffuse  $\nu_{\rm e}\,$  CC Event

![](_page_23_Picture_9.jpeg)

short event, typical EM shower profile

Caren Hagner, Universität Hamburg

![](_page_24_Picture_0.jpeg)

### **MINOS Results: Fit to Oscillation Hypothesis**

![](_page_24_Figure_2.jpeg)

"Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam" MINOS Coll., Phys. Rev. Lett. 101, 131802 (2008)

![](_page_25_Picture_0.jpeg)

# MINOS: Allowed Regions (new)

![](_page_25_Figure_2.jpeg)

Why? This is one possibility to measure  $\theta_{13}$  and  $\delta_{CP}$ : The Oscillation probability  $P(v_{\mu} \rightarrow v_{e})$  is approximately given by:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2}\theta_{23} \frac{\sin^{2}2\theta_{13}}{(\hat{A}-1)^{2}} \sin^{2}((\hat{A}-1)\Delta) \\ &+ \alpha \frac{\sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}}{\hat{A}(1-\hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta) \\ &+ \alpha \frac{\cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}}{\hat{A}(1-\hat{A})} \cos(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta) \\ &+ \alpha^{2} \frac{\cos^{2} \theta_{23} \sin^{2} 2\theta_{12}}{\hat{A}^{2}} \sin^{2}(\hat{A}\Delta) \end{split}$$

with:

$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2 \ll 1$$
  

$$\Delta = \Delta m_{31}^2 L / 4E$$
  
matter dependent quantities :  

$$\hat{A} = 2VE / \Delta m_{31}^2$$
  

$$V = \sqrt{2}G_F n_e, \text{ with electron density } n_e \text{ (assumed constant)}$$

![](_page_27_Picture_0.jpeg)

35 events found in signal region, expected background: 27 ± 5(stat) ± 2(syst)

 $sin^2 2\theta_{13} < 0.29$  (90% CL) for  $\delta_{CP}$ = 0 and normal hierarchy

![](_page_27_Figure_4.jpeg)

From "Recent Results from the MINOS experiment", M. Diwan @ Neutrino Telescopes Venice March 2009, arXiv:0904.3706

![](_page_28_Picture_0.jpeg)

Neutrino beam  $(v_{\mu})$  from CERN to Gran Sasso Underground Lab (Italy)

![](_page_28_Figure_2.jpeg)

first physics run: june-november 2008; run 2009: just started

### survival probability of $v_{\mu}$ for $E_v$ =17GeV

![](_page_29_Figure_1.jpeg)

![](_page_30_Picture_0.jpeg)

# CNGS beam ("pure" v<sub>µ</sub>)

![](_page_30_Figure_2.jpeg)

Total exposure expected: 22.5<sup>E</sup>19 pot

$$\langle E_v \rangle = 17 \text{GeV}$$
  
 $\overline{v}_{\mu} / v_{\mu} = 4\%$   
 $\overline{v}_e + v_e ) / v_{\mu} = 0.87\%$ 

Lecture 1

![](_page_30_Picture_5.jpeg)

4.5.1019pot/year

# Profile of neutrino beam @ LNGS

![](_page_31_Figure_1.jpeg)

![](_page_32_Picture_0.jpeg)

# **OPERA:** $v_{T}$ detection

![](_page_32_Figure_2.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

seasanti

**OPERA** 

lead-emulsion-brick (total ≈ 150000)

target mass: ≈1.2 kton

![](_page_33_Figure_4.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

![](_page_34_Picture_0.jpeg)

# **OPERA - Detector**

![](_page_34_Picture_2.jpeg)

Lecture 1

SFB Lecture, 12.6.2009

![](_page_35_Picture_0.jpeg)

# **OPERA - Detector**

### Supermodule 1

![](_page_35_Picture_3.jpeg)

### Target Region:

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per Supermodule)

![](_page_36_Figure_0.jpeg)

![](_page_37_Picture_0.jpeg)

# **OPERA - Detector**

![](_page_37_Figure_2.jpeg)

# Reconstruction (I): Myon-Spectrometer

![](_page_38_Figure_1.jpeg)

Track identified as a muon (P=3.394 GeV/c)

anenenett if

OPERA

![](_page_39_Picture_0.jpeg)

# **Rekonstruktion (II): Brick Finding**

### Electronic data (Target Tracker & Muon spectrometer)

![](_page_39_Figure_3.jpeg)

![](_page_40_Picture_0.jpeg)

# **OPERA – Brick Manipulating System**

![](_page_40_Picture_2.jpeg)

≈30 bricks/day are extracted

# OPERA – Changeable Sheet (CS) Method

After extraction:

- 1.) First X-ray exposure of brick with CS
- 2.) CS is detached and developed underground brick is kept in shielding box (5cm iron)
- 3.) If track in CS is compatible with track reconstructed by electronic detectors: Second X-ray exposure of brick, brick brought to surface

![](_page_41_Figure_6.jpeg)

![](_page_42_Picture_0.jpeg)

# **Emulsion Development @ LNGS**

- Bricks brought to "cosmic ray pit" (@ surface), exposure 24h.
- Local alignment with cosmic myons (afterwards precision of 1-2µm).
- bricks are developed in 5 (6) automatic development lanes.
- 50 bricks/day can be developed (16h).

![](_page_42_Figure_6.jpeg)

![](_page_42_Picture_7.jpeg)

![](_page_43_Picture_0.jpeg)

# Scanning

≈40 automatic microscopes in scanning labs in Europe(ESS) and Japan(S-UTS)

![](_page_43_Figure_3.jpeg)

# Scanning

![](_page_44_Picture_1.jpeg)

2d image: 16 tomographic images

![](_page_44_Figure_3.jpeg)

![](_page_44_Figure_4.jpeg)

![](_page_45_Picture_0.jpeg)

# **Expected Signal**

### Maximal mixing, run time of 5 years @ 4.5x10<sup>19</sup> pot / year

| channel               | Reconstruction<br>efficiency x BR % | Signal $\Delta m_{23}^2 = 2.5 \text{ eV}^2$ | Signal $\Delta m_{23}^2 = 3.0 \text{ eV}^2$ | Back-<br>ground |
|-----------------------|-------------------------------------|---------------------------------------------|---------------------------------------------|-----------------|
| $\tau \to \mu^-$      | 3.74                                | 2.9                                         | 4.2                                         | 0.17            |
| $\tau \to e^-$        | 3.08                                | 3.5                                         | 5.0                                         | 0.17            |
| $\tau \rightarrow h-$ | 3.19                                | 3.1                                         | 4.4                                         | 0.24            |
| $\tau \rightarrow 3h$ | 1.05                                | 0.9                                         | 1.3                                         | 0.17            |
| Total                 | 11.06                               | 10.4                                        | 14.9                                        | 0.75            |

for OPERA with 1.35kt (75% of proposal)

Most important background processes:

- Charm production and decay
- Hadron re-interactions in lead
- Large angle myon scattering in lead

Overview expected events:

- 25000 v interactions
- 120  $v_{\tau}$  interactions
- ~10 identified  $v_{T}$
- <1 background

![](_page_46_Picture_0.jpeg)

- May 2006: commissioning of electronic detector
- August 2006: first CNGS test beam (only electronic detector)
- October 2007: first physics pilot run (40% of the target) 0.082<sup>E</sup>19 pot, 38 events in bricks.
- July 2008: target complete
- June 2008 november 2008: first OPERA beam period 1.8<sup>E</sup>19pot, 10100 on time events, 1700 bricks with events extracted. (26 charm events expected, 0.6 v<sub>τ</sub> expected)

OPERA collaboration: arXiv:0903.2973v1, accepted for publication in JINST. "The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment".

New beam period started june 2009

![](_page_47_Picture_0.jpeg)

# **Time Synchronisation**

- event selection using GPS timing information
- event timing agrees with CNGS time structure
- background O(10<sup>-4</sup>)
- accuracy 100nsec

![](_page_47_Figure_6.jpeg)

![](_page_47_Figure_7.jpeg)

### October 2007: first OPERA-event in a brick observed

![](_page_48_Figure_1.jpeg)

neessettit

OPERA

# **Direction of CNGS neutrino beam**

![](_page_49_Figure_1.jpeg)

basassaidid

hannana

![](_page_50_Picture_0.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_51_Picture_1.jpeg)

# Status of Brick Analysis (March 09):

- 1700 bricks with events
- 754 bricks developped
- Events localised in 446 bricks (308 still waiting)
- Brick Finding Efficiency 70%, compatible with MC prediction
- Vertex Finding Efficiency:
  - CC events: 90%-95% (MC prediction 90%)
  - NC events: 74%-83% (MC prediction 80%)
- 2 charm candidates have been found (Using CHORUS measurements: 3 expected in this sample)

![](_page_52_Picture_0.jpeg)

# Example of real CC event:

![](_page_52_Figure_2.jpeg)

![](_page_52_Figure_3.jpeg)

![](_page_53_Picture_0.jpeg)

# Example of real NC event:

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_0.jpeg)

# A Charm-Candidate

![](_page_54_Figure_2.jpeg)

![](_page_54_Figure_3.jpeg)

![](_page_54_Figure_4.jpeg)

Clear kink topology Two EM showers pointing to the vertex

| Flight length                 | 3247.2 μm                          |
|-------------------------------|------------------------------------|
| $\theta_{kink}$               | 0.204 rad                          |
| P <sub>daughter</sub>         | 3.9 (+1.7 -0.9) GeV                |
| P <sub>T</sub>                | 796 MeV                            |
|                               |                                    |
| 4x10 <sup>-4</sup> % probabil | ity for a hadron re-interaction to |
| have a $P_T > 600$ N          | AeV 7                              |

![](_page_55_Picture_0.jpeg)

- Detector (target) has been completed by July 2008
- First OPERA beam period june november 2008: exposure: 1.8<sup>E</sup>19 pot, 1700 bricks with events extracted. Brick analysis is ongoing (≈ 450 vertices found by march09). First candidates for charm have been identified.
- Beam period 2009 just started (last week): 1.2<sup>E</sup>18 pot in first week. outlook: 3.5<sup>E</sup>19 pot from CNGS -> 3500 events in bricks expected,
  - -> we may expect 2  $v_{\tau}$  candidates...

### OPERA is awaiting the first $v_{\tau}$ - candidate