The LENA Neutrino Observatory

Björn Wonsak for the LENA Collaboration

- Consortium of European science institutions and industry partners
- Design studies funded by the European Community (FP7)
- LAGUNA: detector site, cavern, and oscillation baselines (2008-11)
- detector tank, instrumentation, and beam source (2011-14) LAGUNA-LBNO:

UH

LENA at Pyhäsalmi

Pyhäsalmi Mine:

- Active copper/zinc-mine in central Finland
- Deepest level: -1450 m (4000 mwe)
 → muon flux about 1/3 of LNGS
- Old bedrock: 3x10⁹ years
 → very hard, dry, 23°C
- Access: elevator shaft road decline railway connection
- Baseline to CERN: 2288 km
 → large matter effects → MH

LENA Detector Layout

Liquid Scintillator: ~69 kton LAB

Concrete tank: r=16 m, h=100 m

PMT support structure: r=14 m

32000 12" PMTs light concentrators → 30% optical coverage

Optical shield

Active volume: ~50 kton

Electronics hall: dome of 15 m heights

Top muon veto: gas/solid scint. Panels Vertical muon veto

Water Cherenkov veto: 2000 PMTs, $\Delta r > 2 \text{ m}$ fast neutron shield inclined muons

Egg-shaped cavern: $V \approx 10^5 \text{ m}^3$

Rock overburden: at least 4000 mwe

LENA: A Mature Project

5

LENA Physics Program

Neutrinos at low energies

- Galactic Supernovae
- Diffuse SN v background
- Solar neutrinos
- Dark matter annihilation
- Geoneutrinos
- Reactor neutrinos
- Radioactive sources
- Pion decay-at-rest beams

GeV energies

- Long-baseline neutrino beam
- Atmospheric neutrinos
- Proton decay into K⁺v̄

Der Forschung | der Lehre | der Bildung

Björn Wonsak

DPG Mainz, 24th March 2014

Solar Neutrinos I

Fiducial mass: 30 kt to reduce γ background

Expected flux: 10000 events per day 200 CNO v per day

→ Oscillation physics: Test transition region of MSW effect

Upturn of ⁸B spectrum visible with 5 σ after 5 y in LENA!

PhD. Thesis Randolph Möllenberg, TU München 2013

Solar Neutrinos II

Solar properties:

- Precise determination of solar neutrino rates
 - → Solve solar metallicity problem
- Search for time variations in flux

Geo Neutrinos

- 10 years LENA: 5-6% precision of U/TH flux ratio, 1% on total flux
 - \rightarrow Abundances and distribution of radioactive elements in Earth
 - \rightarrow Test radiogenic contribution to the heat flux of Earth

UH

10-15 M_{sol} SN in galactic center \rightarrow **15000 events in LENA**

- Core collapse $\rightarrow v_{p}$ burst
- Accretion and cooling phase $\rightarrow \nu/\bar{\nu}\text{-pairs}$

2-3 galactical SN expected every 100 years

Different detection channels for individual neutrino types → Energy and flavor resolved analysis of arrival time

 \rightarrow Test SN-models

Different detection channels for individual neutrino types → Energy and flavor resolved analysis of arrival time

 \rightarrow Test SN-models

+ Oscillations of SN v's sensitive to mass hierarchy

Der Forschung | der Lehre | der Bildung

UΗ

iii

Björn Wonsak

DPG Mainz, 24th March 2014

Different detection channels for individual neutrino types → Energy and flavor resolved analysis of arrival time

 \rightarrow Test SN-models

+ Oscillations of SN v's sensitive to mass hierarchy

Some sensitivity to Si-burning \rightarrow great for SNEWS

Diffuse SN Neutrino Background

Sum of all SN on cosmic scale

- \rightarrow Isotropic neutrino background
- Average neutrino spectrum red-shifted by cosmic expansion
- → Information on star formation rate & SN models

Long-Baseline Neutrinos

Distance CERN to Phyäsalmi: 2288 km

 \rightarrow Large matter effects \rightarrow Good for mass hierarchy

Suggested exposure: 1.5×10^{21} pot (50% v and 50% \overline{v})

 \rightarrow Statistical power > 95% to keep true mass hierarchy if the other should be excluded with 3 σ

Low NC-background rejection efficiency in LSc

 \rightarrow No competitive sensitivity to δ_{CP}

Long-Baseline Neutrinos

Distance CERN to Phyäsalmi: 2288 km

 \rightarrow Large matter effects \rightarrow Good for mass hierarchy

Suggested exposure: 1.5×10^{21} pot (50% v and 50% \overline{v})

 \rightarrow Statistical power > 95% to keep true mass hierarchy if the other should be excluded with 3 σ

Work in progress \rightarrow Final efficiencies not yet known!

Low NC-background rejection efficiency in LSc

 \rightarrow No competitive sensitivity to δ_{CP}

Tracking in LENA

Uses full time-distribution of each PMT

Der Forschung | der Lehre | der Bildung

Björn Wonsak

DPG Mainz, 24th March 2014

Atmospheric Neutrinos

Oscillation physics:

See talk M. Soiron T74.7

- Large matter effects \rightarrow Clear signature for mass hierarchy
- Lower mass than e.g. PINGU/ORCA \rightarrow Less statistic
- Better energy resolution \rightarrow Resolve low energy minimums

- Almost no $\overline{\nu}_{e}$ contamination

DAE
 SALUS Concept

DER FORSCHUNG | DER LEHRE | DER BILDUNG

DAE
 ALUS Concept

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

DAE ALUS Physics Potential

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UH

Björn Wonsak

k DPG Mainz, 24th March 2014

DAE ALUS Physics Potential

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UH

Björn Wonsak D

Conclusions

- LENA is a very mature project
- Extremely rich low energy physics program

- Some sensitivity on MH at higher energies
- Significant progress with tracking in the GeV range
- DAE δ ALUS at LENA = highly competitive δ_{CP} search

LENA related Talks

- Randolph Möllenberg, T107.2 (SN in LENA)
- Markus Kaiser, T107.6 (SN in LENA)
- Björn Wonsak, T11.4 (Tracking in LENA)
- Sebastian Lorenz, T11.5 (Tracking in LENA)
- Dominikus Hellgartner, T40.4 (Tracking in Borexino)
- Michael Soiron, T74.7 (Atmosherische v in LENA)
- Julia Sawatzki, T74.8 (JUNO)

Backup Slides:

Long-baseline oscillation experiments

Lund, Schweden

Protvino

CN2PY:SB500kW 4.5 GeV CN2FR:βB 0.4 GeV P2PY: SB450kW 2.2 GeV

CERN 130 km Fréjus

Long-Baseline Neutrinos

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Björn Wonsak

Long-Baseline Neutrinos

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Reactor Neutrinos

Proton Decay

LENA can set a limit of $\tau_p > 4x10^{34}$ years in the channel $p \rightarrow K^+ + \overline{v}$

- distinct pulse shape
- signal generated by kinetic energy deposition of kaon
- special for LS Cherenkov threshold not reached in water
- prompt signal followed by signals from decay products
- background free for 10 years

Björn Wonsak

Neutrino Detection in LS

Detection channels:

ν:

- elastic scattering $v + e^{-} \rightarrow v + e^{-}$
- proton recoil $v + p \rightarrow p + v$
- reactions on ¹²C (NC and CC)

$$v_e^{-1}$$
:
- inverse β-decay \overline{v}_{p}^{-1} + p → e⁺ + n

JUNO?

How expensive is LENA?

