Supernova-Neutrinos in LENA Channel Discrimination

Markus Kaiser

Institut für Experimentalphysik Universität Hamburg

29.02.2012

Discrimination

Table of Contents

Motivation

Detection channels in LENA

Channel Discrimination

Results and Outlook

Detection channels in LENA

Channel Discrimination

Results and Outlook

- Supernova at 10 kpc would produce about 10⁴ events in LENA
- Astrophysics:
 - What are the conditions in collapsing cores of massive stars?
 - Observation of neutronization burst and shock wave
 - Spectroscopy allows implications on average neutrino energies
- Neutrino physics:
 - Determination of θ_{13} and neutrino mass hierarchy
 - Neutrino-antineutrino oscillations
 - Collective oscillations

- Supernova at 10 kpc would produce about 10⁴ events in LENA
- Astrophysics:
 - What are the conditions in collapsing cores of massive stars?
 - Observation of neutronization burst and shock wave
 - Spectroscopy allows implications on average neutrino energies
- Neutrino physics:
 - Determination of θ_{13} and neutrino mass hierarchy
 - Neutrino-antineutrino oscillations
 - Collective oscillations
- Important: Independent determination of flux and spectra of all *v*-flavours
- LENA has multiple targets and reaction channels

Detection channels in LENA

Channel Discrimination

Results and Outlook

Overview

Charged-Current (CC) channels

$$\begin{array}{l} \bullet \quad \bar{\nu}_e + \mathbf{p} \rightarrow \mathbf{n} + e^+ \\ \bullet \quad \bar{\nu}_e + {}^{12}\mathbf{C} \rightarrow e^+ + {}^{12}\mathbf{B} \\ \bullet \quad {}^{12}\mathbf{B} \rightarrow {}^{12}\mathbf{C} + e^- + \bar{\nu}_e \\ \bullet \quad \nu_e + {}^{12}\mathbf{C} \rightarrow e^- + {}^{12}\mathbf{N} \\ \bullet \quad {}^{12}\mathbf{N} \rightarrow {}^{12}\mathbf{C} + e^+ + \nu_e \end{array}$$

∢ ≣ ≯

Overview

Charged-Current (CC) channels

$$\begin{split} \bar{\nu}_e + \mathbf{p} &\rightarrow \mathbf{n} + e^+ \\ \bar{\nu}_e + {}^{12}\mathbf{C} &\rightarrow e^+ + {}^{12}\mathbf{B} \\ & \bullet {}^{12}\mathbf{B} \rightarrow {}^{12}\mathbf{C} + e^- + \bar{\nu}_e \\ \bar{\nu}_e + {}^{12}\mathbf{C} &\rightarrow e^- + {}^{12}\mathbf{N} \\ & \bullet {}^{12}\mathbf{N} \rightarrow {}^{12}\mathbf{C} + e^+ + \nu_e \end{split}$$

Neutral-Current (NC) channels

►
$$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*(\rightarrow {}^{12}C + \gamma)$$

▶
$$\nu + e^- \rightarrow \nu + e^-$$

▶
$$\nu$$
 + p → ν + p

Discrimination

Results

Inverse Beta Decay (IBD)

$$ar{
u}_{
m e} + {
m p}
ightarrow {
m n} + {
m e}^+$$

- "Golden" detection channel
- ► Expected number of events is around 1.1-1.5×10⁴
- Threshold of 1.8 MeV
- Coincidence by the neutron capturing:
 - $n + p \rightarrow d + \gamma (2.2 \text{ MeV})$
 - Neutron is captured after average time of 0.25 ms

This channel provides high-statistics spectral information of $\bar{\nu}_e$

CC-¹²C channels

$$ar{
u}_{
m e}+{}^{
m 12}{
m C}
ightarrow e^++{}^{
m 12}{
m B}$$

- Expected number of events is around 1.8-4.2 x 10²
- Threshold: 14.4 MeV
- Coincidence by decay of ¹²B:
 - $\blacktriangleright \ ^{12}\mathrm{B} \rightarrow {}^{12}\mathrm{C} + \mathrm{e}^- + \bar{\nu}_e$
 - Half-life of 20.20 ms
 - Q-Value of 13.4 MeV

Discrimination

CC-¹²C channels

$$ar{
u}_e$$
 + $^{12}\mathrm{C}
ightarrow e^+$ + $^{12}\mathrm{B}$

- Expected number of events is around 1.8-4.2 x 10²
- Threshold: 14.4 MeV
- Coincidence by decay of ¹²B:
 - $\blacktriangleright \ ^{12}\text{B} \rightarrow {}^{12}\text{C} + \text{e}^- + \bar{\nu}_e$
 - Half-life of 20.20 ms
 - Q-Value of 13.4 MeV

$$u_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$$

- Expected number of events is around 1.9-5.2 x 10²
- Threshold: 17.3 MeV
- Coincidence by decay of ¹²N:
 - $\blacktriangleright \ ^{12}\mathrm{N} \rightarrow {}^{12}\mathrm{C} + \mathrm{e}^{+} + \nu_{e}$
 - Half-life of 11.00 ms
 - Q-Value of 16.3 MeV

Discrimination

CC-¹²C channels

$$ar{
u}_e$$
 + $^{12}\mathrm{C}
ightarrow e^+$ + $^{12}\mathrm{B}$

- Expected number of events is around 1.8-4.2 x 10²
- Threshold: 14.4 MeV
- Coincidence by decay of ¹²B:
 - $\blacktriangleright \ ^{12}\text{B} \rightarrow {}^{12}\text{C} + \text{e}^- + \bar{\nu}_e$
 - Half-life of 20.20 ms
 - Q-Value of 13.4 MeV

$$u_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$$

- Expected number of events is around 1.9-5.2 x 10²
- Threshold: 17.3 MeV
- Coincidence by decay of ¹²N:
 - $\blacktriangleright \ ^{12}\mathrm{N} \rightarrow {}^{12}\mathrm{C} + \mathrm{e}^{+} + \nu_{e}$
 - Half-life of 11.00 ms
 - Q-Value of 16.3 MeV

Disentanglement of channels provides spectral information of ν_e

NC Channels

$$\nu + e^- \rightarrow \nu + e^-$$

- Expected number of events is around 0.6×10^3
- No threshold, but energy cut because of ¹⁴C background: >0.2 MeV

This channel is dominated by ν_e -signal

$$\nu + {}^{12}\mathsf{C} \rightarrow \nu + {}^{12}\mathsf{C}^*(\rightarrow {}^{12}\mathsf{C} + \gamma)$$

- Expected number of events is around 0.6-1.5×10³
- Excited state of carbon has an energy of 15.1 MeV
 - Threshold: >15.1 MeV

This channel provides information on total flux of all flavours

NC Channels II

$\nu + \mathbf{p} \rightarrow \nu + \mathbf{p}$

- ► Expected number of events is around 1.3-4.4×10³
- Low recoil energies (visible in liquid scintillator)
- No threshold, but energy cut because of ¹⁴C background: >0.2 MeV
 - Corresponding to ${\sim}25~\text{MeV}$ in neutrino energy

This channel provides information on flux of ν_{μ} and ν_{τ}

Event spectra as function of visible energy

Supernova-Neutrinos in LENA

Proton channel

Event rate of proton channel

Detection channels in LENA

Channel Discrimination

Results and Outlook

Approach

- 1. Find IBD coincidences
- 2. Find CC-12C coincidences
- 3. Distinguish the CC-¹²C channels by fitting the beta spectra
- 4. Distinguish the NC spectra with energy cuts

Discrimination

Finding the coincidence events

IBD coincidence cut values

- Position cut: 600 mm
- Time cut: 3 ms
- Energy: 1.7 2.7 MeV

CC-¹²C coincidence cut values

- Position cut: 450 mm
- Time cut: 150 ms
- Energy: <20 MeV</p>

Discrimination

Finding the coincidence events

IBD coincidence cut values

- Position cut: 600 mm
- Time cut: 3 ms
- Energy: 1.7 2.7 MeV

NC energy cut values

- $\nu {}^{12}\text{C}$ scattering: 14.0 16.0 MeV
- νe^- scattering: 3.5 14.0 MeV and >16 MeV
- νp scattering: 0-3.5 MeV

CC-12C coincidence cut values

- Position cut: 450 mm
- Time cut: 150 ms
- Energy: <20 MeV</p>

Distinguish of the CC-¹²C channels

- Figure out how many events are associated with each spectrum
- Challenge: Distinguish two beta spectra with similar decay properties:
 - Half-life: 20.20 ms and 11 ms
 - Q-Value: 13.4 MeV and 16.4 MeV
- Approach: Simultaneous fitting energy and decay time spectra (RooFit)
- Input: Shape of the beta spectra and half-life

Plot of simultaneous Fit with RooFit

A RooPlot of "EventEnergySmeared"

Supernova-Neutrinos in LENA

DecayTime (Microsec)

Detection channels in LENA

Channel Discrimination

Results and Outlook

Over efficiency: false identified events / correct identified events **Cut efficiency:** correct identified events / true number of events

Results

Over efficiency: false identified events / correct identified events **Cut efficiency:** correct identified events / true number of events

Channel	Over efficiency	Cut efficiency
IBD	0.1%<	99,9%>
CC- ¹² C	1%	99%
NC total	1%	99%
NC ¹² C- <i>ν</i>	2%	99%>
NC p- ν	3%	98%
NC e- ν	$\sim 25\%$	$\sim 67\%$

Over efficiency: false identified events / correct identified events **Cut efficiency:** correct identified events / true number of events

Channel	Over efficiency	Cut efficiency
IBD	0.1%<	99,9%>
CC- ¹² C	1%	99%
NC total	1%	99%
NC ¹² C- <i>ν</i>	2%	99%>
NC p- ν	3%	98%
NC e- ν	$\sim 25\%$	$\sim 67\%$

Distinction between CC-¹²C channels: Error of about 7%

Outlook

- Move to full GEANT4 Monte-Carlo
- Use PMT pulse shape for NC channel distinction
- Move to time-varying neutrino spectra
- Study ¹⁴C background to ν -p scattering
- Physics output: What can be learned

Thank you for your attention

SNOwGLoBES: SuperNova Observatories with GLoBES

Dataflow in SNOwGLoBES

Source: SNOwGLoBES Manual

Event rates as function of neutrino energy

GVKM fluence

2

E

Cross sections

æ

∢ 臣 ≯