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Abstract

Large liquid scintillation detectors are successfully used to observe the neutrino oscillation
parameters by detecting reactor neutrinos. A main and hard to identify background are
cosmogenics. These are excited 9Li and 8He atoms, which are produced in showers along
cosmic muon tracks inside the detector. While decaying the cosmogenics can mimic the inverse
�-decay, which is the detection process to identify reactor neutrinos. Muon vetoes are a straight
forward method to reduce this background, but it creates a lot of dead time. With the JUNO
experiment 15.7 % of the reactor neutrino events are predicted to be missed due to the muon
vetoes. A superior muon track and shower reconstruction method, could improve the data
taking of JUNO and comparable experiments tremendously.
The here presented work studies the use of graph convolution networks to reconstruct muon
tracks and corresponding showers. Graph convolution networks provide the option to include
the geometric detector setup to improve the reconstruction. On TOY Monte Carlo Data showers
in the detector volume could be located with an accuracy of ±(0.22 ± 0.14)m. Additionally,
the photon emission distribution was reconstructed in voxel representation. The results on
TOY Monte Carlo Data are a discrimination of (99.24 ± 2.84) % of the path voxels to less than
7 % of the detector volume. Simulated showers are reconstructed with a mean distance of
(0.36 ± 0.47)m. For 85 % of the analyzed data, the showers are reconstructed within a distance
≤ 0.5m to the simulated position. These shower positions can be narrowed to ≤ 0.8 % of the
detector volume. A veto method based on further developments of the presented work could
directly increase the reactor neutrino signal at JUNO.





Kurzzusammenfassung

Um die Neutrinooszillations zu untersuchen können Reaktorneutrinos mit Flüssigzintillations-
Detektoren beobachtet werden. Kosmische Myonen führen dabei zu schwer trennbaren Hin-
tergrundsignalen. Entlang der Myonspuren im Flüßigszintillator können Schauer entstehen,
in welchen Cosmogene auftauchen können. Das sind angeregte 9Li und 8He Atome, welche
beim Zerfall ein Signal, ähnlich zum inversen � Zerfall, erzeugen können. Dieser wird als
Nachweisreaktion für Reaktorneutrinos im Flüßigszintillator genutzt. Um diesen Hintergrund
zu unterdrücken werden oft Myonvetos genutzt. Diese haben den Nachteil, dass sie zu Totzeiten
im Detektor führen können. Beim JUNO Experiment werden voraussichtlich 15, 7 % der Reak-
torneutrinos wegen des Myonvetos nicht detektiert. Eine verbesserte Methode zur Identi�kation
von Schauern entlang von Myonspuren könnte die Menge an detektierten Reaktorneutrinos
mit JUNO erheblich vergrößern.
In dieser Masterarbeit wird die Nutzung von neuronale Graphennetze zur Schaueridenti�kation
entlang einer Myonspur untersucht. Neuronale Graphennetze bieten die Möglichkeit die ge-
ometrische Struktur des Detektors zu nutzen. Die in dieser Arbeit genutzten Daten wurden mit
der Toy Monte Carlo Methode simuliert. Mit diesen Daten konnten Schauer in einem Detektor
mit einem mittleren Abstand von ±(0, 22 ± 0, 14)m lokalisiert werden. Zusätzlich wird auch die
Verteilung der Photonenemission im Detektor rekonstruiert. Damit konnten (99, 24 ± 2, 84) %
der Voxel, welche die Myonspur enthalten, auf unter 7 % des Detektorvolumens eingegrenzt
werden. Die simulierten Schauer konnten mit einem mittleren Abstand von (0, 36 ± 0, 47)m
rekonstruiert werden. Für 85 % der analysierten Daten konnte damit der Schauer mit einem
Abstand von unter 0, 5m bestimmt werden. Diese Schauer können damit auf ≤ 0, 8 % des
Detektorvolumens begrenzt werden. Eine Vetomethode basieren auf einer Weiterentwicklung
dieser Arbeit könnte somit die Menge an detektieren Reaktorneutrinos, in Experimenten wie
JUNO, vergrößern.





Contents

1 Introduction 1

2 Neutrino Physics 3
2.1 Neutrinos in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Weak Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Mikheyev-Smirnov-Wolfenstein E�ect . . . . . . . . . . . . . . . . . . 10

2.3 Open Questions in Neutrino Physics . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Mass Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Current Status of Neutrino Oscillation Parameters . . . . . . . . . . . 13

3 Neutrino Detection with Liquid Scintillators 15
3.1 Liquid Scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Neutrino Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Reactor Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 JUNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Research Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Cosmogenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Background suppression methods . . . . . . . . . . . . . . . . . . . . . 21

Potential of further Background suppression methods . . . . . . . . . 23
3.4 Future Detectors - Theia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Outstanding Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Physics Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Graph Neural Networks 27
4.1 Introduction into Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I



II CONTENTS

4.1.3 Monitoring and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 31
ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Graph Neural Networks (GNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Graph Convolution Networks (GCN) . . . . . . . . . . . . . . . . . . . 34

Graph Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Edge Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Geometric Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Simulation and Data 39
5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Generated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Classic Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Simple Coordinate Reconstruction . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Simple Voxel Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 46

6 Coordinate Reconstruction 51
6.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Optimized Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Voxel Reconstruction 59
7.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2.4 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3.1 Optimized Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Geometrical Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Cross Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Mean Squared Error Loss . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS III

Total Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4.1 De�ning the cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Conservative cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cut with a higher Background discrimination . . . . . . . . . . . . . . 76

7.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusion 81
8.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1.1 Coordinate Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1.2 Voxel Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.1 Potential Application at Theia . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

List of Abbreviations 93

Appendix 95

Acknowledgments 105





Chapter 1

Introduction

Neutrinos are fundamental particles described by the Standard Model of Elementary Particles
(SM). But despite its great success, the neutrinos do not behave as predicted by the SM. In the
SM the neutrinos are considered massless, but the neutrino masses have been proven to be
di�erent form zero, by the observation of neutrino oscillations. The neutrino masses and the
neutrino oscillations lead to the mass hierarchy problem. Additionally, the neutrino is part of
many beyond the Standard Model theories, like for example Grand Uni�cation theories. These
theories try to unify three of the four fundamental forces to describe the early stages of the
universe. Therefore, the neutrino is an interesting particle and the observation of its properties
might lead to meaningful discoveries. The physics of the neutrino is introduced in chapter 2.
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillation detector,
with 20 kt volume. Right now it is under construction and the �rst measurements are scheduled
for 2021. Its goals are to observe the neutrino oscillations in order to determine the mass
hierarchy and measure the oscillation parameters. This will be achived by measuring reactor
neutrinos from two power plants in about 53 km distance. The detection reaction is the inverse
� decay (IBD). At JUNO about 83 /day reactor neutrino events are predicted. This small rate,
despite the large detector volume, shows how rarely the neutrino interacts. To detect rare
interactions it is extremely important to understand the background and ideally have the
opportunity to distinguish it from the signal. Eventhough JUNO is about 700m under ground to
shield the detector form cosmic muons, these are the biggest background at JUNO. The expected
cosmic muon rate is 3.5Hz with an average energy of 215GeV [1]. This is a tremendous amount
and makes the muon vetos mandatory. Cosmic muons do not have the characteristic signature
of the IBD signal and are therefore no direct background for reactor neutrinos. But along the
muon tracks showers can occur, which can result in radioactiv isotopes called cosmogenics.
For JUNO these are 9Li and 8He. The decay of these isotopes can mimic the IBD and are thereby
direct background. To suppress this background JUNO plans to use muon vetos. These have an
e�ciency of ≈ 98 % on the cosmogenics. But the e�ciency on the IBD is only about 83 % [1].
An improved muon veto could directly improve the e�ciency of JUNO for reactor neutrinos.
JUNO is introduced in chapter 3.3.

1



2 CHAPTER 1. INTRODUCTION

One approach which tackles this problem is the Quadratic Reconstruction (QR) [2]. This method
uses classical computation techniques to reconstruct the photon emission distribution inside a
detector, which can be used for shower identi�cation. The results of this method are excellent.
A background suppression technique based on this method could increase the reactor neutrino
signal at JUNO by approximately 10 %.
Basically, this work tackles the same problem by using machine learning methods. A full
development of an improved muon veto for JUNO or a method similar to QR would by far
exceed the frame of this work. Therefore, a machine learning approach is developed on
simulated data with simpli�ed constrains.
Working on the same problem as an already successful method is in no way irrelevant. On
the one hand having a second method, which independently comes to the same results is a
validation of measurement or reconstructions. On the other hand, the QR works with look up
tables. This is a common method to fasten up computations on complicated calculations. But it
has the downside, that theses tables can use a lot of memory space and need to be kept up to
date or newly made for new applications. In contrast to machine learning techniques, which
typically do not need much memory space. No lookup tables need to be computed or fostered.
Additionally, taken data can be used to improve the algorithm along the way, improving the
prediction with time of use. Furthermore, the machine learning methods are versatile and with
some more new training a similar architecture can be recycled for a new application. All in all,
machine learning techniques appear to be a great method for a reconstruction task like this.
As cosmogenics occur in combination with showers along muon tracks, the goal of this work
is to develop a machine learning based reconstruction methods, which identify showers along
muon tracks in liquid scintillation detectors. Furthermore, the developed method is supposed to
reconstruct the photon emission distribution for a muon track inside the detector. To reach this
goal data sets are simulated with simpli�ed constrains. The simulation and the corresponding
data sets are introduced in chapter 5. For this work graph convolution networks are used.
These provide the bene�t, that the structure of given data can be implemented in the network
via the graph. The goal, to identify showers along muon tracks and reconstruct corresponding
photon distributions is split in two steps. Firstly, the muon track is reconstructed spatially
with the help of coordinate representation, presented in chapter 6. Afterwards, the muon track
and the corresponding photon emission distribution are reconstructed in voxel representation,
discussed in chapter 7. This approach has the advantage that in the �rst simpler step, a suitable
methods is developed. The approved method is developed further to obtain the goal of the
second step. After the presentation of the results a conclusion with an outlook for further
applications is given in chapter 8.



Chapter 2

Neutrino Physics

In this chapter physics relevant for this work is introduced. Neutrino physics with focus on
neutrino oscillation and mass hierarchy will be covered, as well as open questions. This chapter
is mainly based on [3].

2.1 Neutrinos in the Standard Model

This section introduces the Standard Model of Elementary Particles (SM) with focus on the
neutrinos. The SM describes the essential knowledge of particle physics. It classi�es all known
particles and describes their interactions with three of the four fundamental forces. While
electromagnetism, weak and strong force are covered by the Standard Model, gravitation is
not included. The elementary particles of the SM are displayed in �gure 2.1. It shows the
masses, charges and spins of all fundamental particles. The particles in the SM are associated
with antiparticles, these have the same mass, but opposite charge. The fundamental particles
are classi�ed into two groups, the bosons and the fermions. The gauge bosons transmit the
elementary forces, except for the Higgs boson, which has a special role in the SM. All ele-
mentary bosons have an integer spin and follow the Bose-Einstein statistics. The fermions
follow the Fermi-Dirac statistics and have a half-integer spin. Fermions are further classi�ed in
quarks and leptons, both have three generations. The charged leptons are the electron, muon
and tau, all carrying a negative electric charge of −1. Each charged lepton has an uncharged
partner particle within the same generation, the electron, muon and tau neutrino. Neutrinos
do not carry electromagnetic or color charge, thus they only interact via the weak force. Weak
interactions are transmitted by the Z 0 boson referred to as "neutral current" and the W ± boson
as "charged current". The neutrino interactions are described in more detail in section 2.1.2.
Even though in �gure 2.1 the neutrinos are denoted with an upper mass limit, they are consid-
ered massless in the Standard Model. The given mass limit was set by KATRIN in 2019 [5].
The SM is a very successful theory. It predicted particles like the Z 0 boson, top and charm
quark and the Higgs boson, which were later found in experimental research. Still it has some

3



4 CHAPTER 2. NEUTRINO PHYSICS

Figure 2.1: Elementary Particles of the Standard Model of Elementary Particles [4].

shortcomings. One of which are the mentioned neutrino masses, which are proven to be
non-zero by neutrino oscillations, which is covered in chapter 2.2. Additionally, the Standard
Model does not include the gravitation, even though it is one of four fundamental forces. Dark
matter and matter-anti matter asymmetry are not adequately explained in the SM either. There
are many di�erent theories which extend the Standard Model, to explain these open problems.

2.1.1 Weak Force

The weak force is one of the four fundamental forces. Neutrinos only interact weakly. The
weak force is the only fundamental force, which violates charge, parity and CP symmetry:

Parity Symmetry
Partity transformation describes the spacial transformation of coordinates, which are �ipped
in sign:
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⎠

. (2.1)
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In equation 2.1 a parity transformation is shown. While the spatial coordinates x, y, z change
sign, the time coordinate t stays unchanged under parity transformation. The Wu experiment
revealed in 1956, that parity is violated in weak interactions [6].
The parity symmetry is violated by the weak force, because its gauge bosons only interact with
left-handed particles and right-handed anti-particles. The handedness or helicity is de�ned
as the projection of the spin onto the direction of momentum of a particle. A particle has
right-handed helicity, when the spin projection is parallel to the direction of momentum and
has left-handed helicity in case it is anti-parallel, respectively. As the direction of momentum
depends on the reference frame, the helicity can be �ipped with a Lorentz boost, in case the
considered particle is massive. For massless particles the helicity is Lorentz invariant. In this
case the chirality is equal to the helicity. The chirality is a Lorentz invariant property for
massive and massless particles. For Dirac fermions it is de�ned by the operator  5, which
has the eigenvalues ±1. This operator projects any Dirac �eld into its left- and right-handed
components. In the SM all fermions are Dirac fermions, as they have spin 1/2 and are di�erent
form their anti-particles.
As the weak force does not interact with right-handed fermions and left-handed anti-fermions,
it violates charge symmetry.

Charge Symmetry
Charge symmetry is observed, when physical laws are valid in a process which is charge
conjugated as well as in the original process. Charge conjugation describes the change of every
particle in a considered frame with its corresponding anti-particle and vice versa. As the weak
force only couples to left-handed particles and right-handed anti-particles, it violates charge
symmetry. For all other fundamental forces the charge symmetry is obtained.

CP Symmetry
The combination of parity and charge symmetry is the CP symmetry. CP symmetry in con-
served when a process stays unchanged under charge and parity conjugation. In 1964 the
CP violation of the weak force was discovered in the decay of neutral kaons [7]. This only
a�ects the quark sector of the weak interaction. Whether the CP is also violated in the leptonic
sector is not yet known. The open problem of CP violation in the leptonic sector is discussed
in section 2.3.2.

The Glashow-Weinberg-Salam model (GWS) uni�es the weak force with the electromagnetic
force in the elektroweak theory. It consists of the weak isospin SU(2) and the hypercharge
U(1). The generators are the weak isospin T3 and the weak hypercharge Y , the combination
of both is the electric charge Q, with Q = T3 + Y /2. The weak isospin is a quantum number.
It can be interpreted as the weak charge, while the hypercharge is the charge of electroweak
interactions. The weak isospin is de�ned to be +1/2 for all left-handed neutrinos and −1/2
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for the left-handed charged leptons e−, �− and �−. All right-handed particles and left-handed
anti-particles have a weak isospin of 0. The weak isospin is conserved in weak interactions.
For this theory the fermions are clustered in singlets and doublets:

(
�e
e−)

L

,
(
��
�−)

L

,
(
��
�−)

L

, eR , �R , �R (2.2)

In equation 2.2 the leptonic, electroweak singlets and doublets are displayed. The leptonic dou-
blets consist of a charged lepton and the neutrino from the same generation, the singlets only
hold the charged leptons. As the electroweak force describes the uni�cation of electromagnetic
and weak force the charged lepton singlets are needed to describe their electromagnetic inter-
actions. The right-handed neutrinos are neither interacting weakly nor electromagnetically
and thereby not described by this theory. The quarks also arranged in singlets and doublets,
they interact weakly and electromagnetically.

2.1.2 Neutrino Interactions

The neutrinos only interact weakly, therefore only left-handed neutrinos and right-handed
anti-neutrinos interact.

Charged and Neutral Current
The weak force is transmitted by the W ± and the Z 0 boson. These two possible interaction

(a) Neutral current interaction. (b) Charged current interaction.

Figure 2.2: Examples for neutral and charged current transmitted over Z 0 or W ± with electrons
e− and neutrinos in di�erent �avors �e,�,� .

types are called charged and neutral current, displayed in �gure 2.2. The charged current
is transmitted by the charged W ± boson, the Z 0 boson is neutral and transmits the neutral
current.
The neutral current in transmitted by the neutral Z 0 bosons. It is an elastic scattering process.
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In the displayed case an electron scatters with a neutrino of any �avor. There are many di�erent
neutral current interactions possible. All weakly interacting fundamental particles can interact
in such an interaction.
The charged current is transmitted by the charged W ±. It couples to both particles of an
electroweak doublet. Interactions with two leptons from di�erent generations are not allowed,
as this would violate lepton �avor conservation. The most common charged interaction with
the neutrino is the � decay. This is also the process involved into the discovery of neutrinos [8].

� Decay
The � decay is a radioactive decay of a nucleus. It can be distinguished between the positive and
the negative �-Decay, denoted with �+- or �−. In both cases a nucleus emits a charged lepton,
either electron or positron, and its partner neutrino, the electron antineutrino or neutrino. The
nucleus transforms into an isobar, which is a nucleus with the same number of nucleons, but
di�erent composition of protons and neutrons.
For the negative �− decay a neutron n decays into a proton p, an electron e− and an electron
antineutrino �e:

n → p + e− + �e . (2.3)

For the positive �+ decay, a proton p decays into a neutron a positron e+ and an electron
neutrino �e:

p → n + e+ + �e (2.4)

For both processes the inverse direction is possible, named inverse � decay (IBD). The � decay
processes only occur with the electron neutrino �e and the electron anti-neutrino �e , as they
are in the electroweak doublet with the electron e− or positron e+, respectively.

2.2 Neutrino Oscillations

Neutrino oscillation describes the property of neutrinos to change �avor, which only occurs if
they are massiv. In 1998 neutrino oscillations were �rst measured with the Super-Kamiokande
detector [9], this delivered the �rst evidence for neutrino masses. The measured �ux of at-
mospheric neutrinos did not match with the theoretical predicted neutrino �ux. Neutrino
oscillation had already been predicted in 1962 by the theory of Maki, Nakagawa and Sakata [10].
Even though their theory was �rst proposed, when only two neutrino �avors were known, the
theory could be adjusted for three �avors. In 2001 the SNO collaboration published evidence for
neutrino oscillations of solar neutrinos [11]. 2015 these results were honored with the Nobel
Price for the discovery of neutrino oscillations.
Neutrino oscillations are comparable with mixing in the quark sector. The neutrino �avors elec-
tron, muon and tau, which are known from the Standard Model, are the interaction eigenstates.
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Additionally, neutrinos have the so called mass eigenstates. When a neutrino is produced in an
interaction it needs to be in one of the �avor eigenstates, otherwise it cannot interact. While
traveling through time and space, the phases of the wave functions of the mass eigenstates
propagate slightly di�erent due to the mass di�erences. The neutrino becomes thereby a
superposition of �avor eigenstates. Thereby it can be detected in an eigenstate di�erent, to the
one it has originally been produced in.
The �avor eigenstates �� and the mass eigenstates �i are mixed over a unitary matrix U , which
gives the relation between mass and �avor eigenstates. Here the transformation is given:

|��⟩ = ∑
i
U�i |�i⟩ . (2.5)

The mass eigenstates are given by |�i⟩, with the corresponding masses mi , the �avor eigenstates
are denoted as ⟨�� |, with the �avors electron, muon and tau. In the SM three neutrino �avors
are predicted, but the formalism in principle is also valid for two or more �avors. In the
following the three �avor case is considered, with Roman letter indices the mass eigenstates
and with Greek letter indices the �avor eigenstates are denoted. U�i is the (�i)th element of
the transformation matrix, known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. It is
de�ned as

UPMNS =
⎛
⎜
⎜
⎜
⎝

c12c13 s12c13 s13e−i�

−s12c23 − c12s23s13ei� c12c23 − s12s23s13ei� s23c13
s12s23 − c12c23s13ei� −c12s23 − s12c23s13ei� c23c13

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

ei� 0 0
0 ei� 0
0 0 1

⎞
⎟
⎟
⎟
⎠

(2.6)

with cij = cos �ij and sij = sin �ij . �ij represents the three real mixing angles 0 ≤ �12, �13, �23 ≤ �/2.
In total the PMNS matrix has six free parameters: three CP violating phases �, �, � and three
real mixing angles �ij . The phases �, � are the Majorana phases [12], these are not considered
in this work and therefore set to zero. Thereby the second matrix in equation 2.6 becomes the
unit matrix and drops out. For this work � is considered to be the only CP violating phase for
neutrino oscillations. The CP is maximally violated for � = � and not violated for � = 0 = 2� .
To regard the time development of neutrinos, their wave function properties can be used

|�� (t)⟩ = e−iEi t |�i(0)⟩ . (2.7)

|�i(0)⟩ describes the neutrino �i in the production state at t = 0. The energy is de�ned as
Ei =

√
p2 +m2

�i , p describes the momentum and mi the mass of the considered neutrino. To
conclude the time evolution of the �avor eigenstate equation 2.5 is used

|�� (t)⟩ = ∑
i
U�ie−iEi t |�i(0)⟩ . (2.8)

Equation 2.8 shows nicely the reason for neutrino oscillation. The �avor eigenstate |�� (t)⟩ is
de�ned as a superposition of the three mass eigenstates, with di�erent masses mi . Due to the
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di�erent masses, also the energies Ei di�er, which results in di�erent exponential phases for
the mass eigenstates. Thereby the time development for the three summands di�ers, resulting
in a time dependence of the superposition of the three mass eigenstates.
The probability to detect a neutrino at one point in space-time in a certain �avor � , can be
described as in equation 2.9. Here the Dirac notation comes handy, which gives the probability
by the squared quantum mechanical amplitude. To �nd the amplitude the hermitian conjugate
⟨�� | of |��⟩ in equation 2.5 is used. It is de�ned as ⟨�� | = ∑j U ∗

�j ⟨�j |. The probability of a
neutrino, produced in �avor � , to be detected at time t in �avor � is given by

P (�� → ��) = | ⟨�� |�� (t)⟩ |2 =
|||

3
∑
i,j=1

U�iU ∗
�j ⋅ e

−iEi t ⟨�j |�i⟩
|||
2
. (2.9)

For the next step two assumptions need to be made. Firstly, the eigenstates are considered to
be normalized and orthogonal by de�nition. This allows to cancel out the double summation,
because ⟨�i |�j⟩ = �ij . Secondly, neutrinos are highly relativistic particles mi ≪ Ei , in all known
production processes. Therefore, the energy can be Taylor approximated to the �rst order with:
Ei = |p|

√
1 + (mi /p)2 ≈ |p| + 1

2m
2
i /|p| − ... . With this knowledge equation 2.9 can be transformed

and the probability expressed as

P (�� → ��) = ∑
i,j
U�iU ∗

�iU
∗
�jU�j exp(−i

m2
i −m2

j

2|p|
t) . (2.10)

Equation 2.10 nicely shows the importance of the neutrino masses for the neutrino oscillations.
The squared mass di�erences Δm2

ij = m2
i −m2

j between the neutrinos determine the oscillation
period. Additionally, this equation reveals that the three neutrino masses are neither equal nor
all zero. In this case the time dependence would vanish, leaving only the matrix elements U ,
which are constant over time. This concludes if neutrinos would have equal or no masses, no
neutrino oscillation could be observed.
Since neutrino masses and therefore their di�erences are fairly small compared to their mo-

mentum |p|, the oscillation period becomes macroscopic and can be observed over several
kilometers. Figure re�g:Osci shows the observation probability of an initial electron neutrino
in vacuum. The probability to detect an electron neutrino is plotted in black, the probabilities
to detect a muon or a tau neutrino are displayed in blue and red. On the x axis the distance
to energy relation L/E is used. This relation is handy to compare di�erent experiments. Ad-
ditionally, the relation naturally appears in the probability equation 2.10. The exponent of
the exponential function in this equation is −i tΔm

2
ij

2|p| . As neutrinos can be considered highly
relativistic mi ≪ Ei , |p| can be approximated with |p| =

√
E2 +m2 ≈ E. Additionally, the time

of detection t = L/v with the traveled distance L and the speed v, can be approximated as
t ≈ L/c = L. These approximations give the new exponent (−i Δm

2
ij

2 ⋅ LE ), which already holds the
ratio L/E.
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Figure 2.3: Neutrino oscillations in vacuum in regard of the distance to energy relation L/E.
The propabilities to detect an electron, muon or tau neutrino are displayed in black, blue and
red [13].

2.2.1 Mikheyev-Smirnov-Wolfenstein E�ect

With the assumption E2 = p2 +m2
i the neutrino has been considered to be a free particle, but

this is only true in vacuum. Even though the neutrino only couples weakly, it still interacts
with matter. This changes neutrino oscillation in matter compared to in vacuum. Matter
contains electrons e−, neutrons n and protons p, which all couple to the weak force, just like
the neutrinos. Neutrinos interact via charged or neutral current, which is mediated with W ±

and Z 0 bosons, respectively. Neutral current is an elastic scattering process, which is possible
for all the three neutrino �avors. The process is displayed in �gure 2.2a, the Z 0 boson couples
to any other weakly interacting particle like quarks contained in e.g. p or n, or e−.
Charged current interactions with matter only occur for the electron neutrino. This naturally
appears because the neutrino only interacts with leptons of the same generation. As matter
usually contains electrons e−, the electron neutrino �e can couple to it. While theoretically
this process is also possible for � and � neutrinos, muons and taus do not naturally occur
in matter. Therefore, only the elastic scattering of the electron neutrino with the electron is
relevant for neutrino oscillation in matter, it is displayed in �gure 2.2b. Through this process
electron neutrinos �e experience, in contrast to the other neutrino �avors, coherent forward
scattering, which changes the relationship between the phases in neutrino oscillation. This
e�ect is called MSW e�ect and was �rstly described in 1986 [14]. As this process strongly relies
on the presence of electrons, it is especially strong in matter with a high electron density.
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Here the Mikheyev-Smirnov-Wolfenstein (MSW) is introduced shortly, it is for example de-
scribed in more detail in paper [15].

2.3 Open Questions in Neutrino Physics

In this section the open questions of neutrino physics are discussed. The mass hierarchy and
the CP violation are introduced in detail. Afterwards, the neutrino oscillation parameters are
discussed.
There are more open questions in neutrino physics, which are only brie�y mentioned here,
being the total neutrino masses and the Dirac property of neutrinos.
The total neutrino masses for the three known �avors are not yet known, but restricted by upper
limits. One experiment working on the total mass of the electron anti-neutrino is KATRIN [5].
Neutrinos only interact weakly and the weak force only couples to left-handed neutrinos and
right-handed anti-neutrinos. Thus, the right-handed neutrinos and left-handed anti-neutrinos
do not interact with any known force. These neutrinos could be sterile [16]. Another option is,
that the neutrinos are their own anti-particles and thereby Majorana instead of Dirac particles.
More about Majorana particles can be found in reference [12].

2.3.1 Mass Hierarchy

As introduced in the last section, the squared mass di�erences Δm2
ij = m2

i −m2
j of the neutrino

mass eigenstates are crucial for the neutrino oscillation. But with the mass di�erences, mea-
surable through the oscillation probability the question arises, which mass eigenstate is the
heaviest and which the lightest one. To determine the mass hierarchy is an important step for
further precision measurements of neutrino oscillation parameters. As the mass hierarchy is
not yet known, all nowadays experiments are analyzed for both cases. A set mass hierarchy
would eliminate uncertainties on the values of the CP phase � , the mass di�erence Δm31 and
the mixing angles �13 and �23. This would improve future experiments, as these are tuned to
ideally measure the range in question.
The mass di�erences for the three mass eigenstates have been measured to be quite di�erent
in size, with Δm2

21/Δm2
31 ≈ 3%. Due to MSW and matter e�ects the sign of Δm2

21 was �xed
to be positive. But this was not yet possible for the much bigger Δm2

31. The mass hierarchy
could also be determined by precisely measuring Δm2

31 in comparison to Δm2
21 and Δm2

32, but
no experiment archived a su�cient precision yet. While it is certain, that the mass eigenstate
�1 is lighter than �2, it stays unclear whether �3 is the heaviest or the lightest mass eigenstate.
The two possibilities are:

• normal hierarchy (NH) with m�1 < m�2 < m�3 and Δm2
32 > 0. This order is called normal

as the lightest state belongs to the mass eigenstate �1.
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• inverted hierarchy (IH) with m�3 < m�1 < m�2 and Δm2
32 < 0. Here the lightest mass

eigenstate is �3.

Figure 2.4: The two possible mass hierachies normal and inverted, from [17].

Both hierarchies are displayed in �gure 2.4. The sign of Δm2
31 could in future be measured with

a long or medium baseline experiment, by analyzing the oscillation propability distributions.
These baselines would be around ≤ 50 km. For reactor neutrinos within the energy range of
2 − 8MeV the range of ≈ 6000 − 25000 km/GeV [18] in �gure 2.3 is covered. In this area the
probability distributions for detecting a muon or tau neutrino are maximally shifted to each
other and the probability to detect an electron neutrino from an initial electron neutrino has
its minimum.

2.3.2 CP Violation

One open problem in cosmology, is the matter-anti-matter asymmetry. Up to nowadays knowl-
edge the big bang should have created the same amounts of matter and anti-matter. The exact
same amount of matter and anti-matter should have annihilated. But still there is matter left in
the universe. This imbalance could be explained by CP violation. The CP violation in the quark
sector is only very small, it cannot be alone responsible for the asymmetry. In theory there are
two more sectors where CP violation is predicted. One is the strong interaction and the other
one is the leptonic sector of the weak interaction.
Whether or not the CP is violated in the leptonic sector as well, is not yet known. In the PMNS
matirx the CP violating phase is already incorporated as � . Neutrino oscillation experiments
can measure the CP violating phase over the di�erence in the oscillation spectra of neutrinos
and anti-neutrinos. As displayed in section 2.3.3 the latest measurements suggest violated CP,
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but no su�cient signi�cance has been reached yet.

2.3.3 Current Status of Neutrino Oscillation Parameters

The oscillation parameters are the three mixing angles, the squared mass di�erences and the
CP violating phase. These are observed with di�erent experiments and methods, which are
shortly mentioned next.
The KamLAND experiment measured the parameters �12 and Δm2

21 with good precision [19]
and was able to measure the sign of Δm2

21 to be positive. These parameters do not depended on
the mass hierarchy.
�13 was �rstly measured to be non-zero by Double Chooz in 2012, with a signi�cance of 2.6 �
[20]. Daya Bay and Reno con�rmed this results with a signi�cance > 5� [21], [22]. Both
experiments observe �13 over the disappearance of reactor neutrinos.
�23 is under observation in a number of long baseline experiments, like No�a and T2K [23].
No�a is additionally measuring Δm32 [24]. Δm32 is the sum of Δm21 and Δm31, it is not explicitly
listed in table 2.3. The mass di�erence Δm31 is the biggest value of the three mass di�erences,
displayed in �gure 2.4.
The JUNO experiment plans to determine the mass hierarchy. The energy resolution is planned
to be able to distinguish between the neutrino probabilities for normal and inverted hierarchy
[1]. JUNO is described in detail in section 3.3. Additionally, precision measurements of Δm2

21

and �12 are predicted.
T2K and No�a additinally observe the CP violating phase � . To obtain measurements of �
four oscillation channels were analyzed: �� → �� , �� → �e , �� → �� and �� → �e . The
obtained distributions are �tted to a function describing the expected number of events, with
degrees of freedom for each oscillation parameter and all systematic uncertainties. Additionally,
the oscillation parameters were constrained by data. These analyzes were able to exclude
the interval of �CP ∈ [−3.41, −0.03] for the normal and [−2.54, −0.32] for the inverted mass
hierarchy [25].
All these measurements are brought into context with analyzes and �ts of the data. Here the
results of the latest global �t from 2020 [26] are shown.
For this analysis the data from T2K till December 2019, the latest No�a statistics, and the data
from Daya Bay, RENO, IceCube, DeepCore, SNO, Gerda, CUORE and KamLAND-Zen have
been used. The results are displayed in table 2.1. In the table the mass di�erences between
the neutrino mass eigenstates Δm21 and Δm31, the mixing angles �12, �13 and �23 and the CP
violating phase � are listed. All values despite Δm21 and �12 are �tted for the NH and IH. This
refers to the normal and inverted mass hierarchy, which is introduced in section 2.3.1. For
every parameter the best �t ±� and the ranges with the signi�cance of two and three sigma
are given.
As described for the CP violating phase, neutrino oscillation parameters are often measured by
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Table 2.1: Oscillation parameters from the global �t 2020 [26]. NH and IH reveres to the normal
and inverted mass hierarchy.

parameter best �t ±� 2� range 3� range
Δm2

12[10−5eV2] 7.50+0.22−0.2 7.11 − 7.93 6.94 − 8.14

|Δm2
31|[10−3eV2] (NH) 2.56+0.03−0.04 2.49 − 2.62 2.46 − 2.65

|Δm2
31|[10−3eV2] (IH) 2.46 ± 0.03 2.40 − 2.52 2.37 − 2.55

sin2 �12/10−1 3.18 ± 0.16 2.86 − 3.52 2.71 − 3.70

sin2 �32/10−1 (NH) 5.66+0.16−0.22 5.05 − 5.96 4.41 − 6.09
sin2 �32/10−1 (IH) 5.66+0.18−0.23 5.14 − 5.97 4.46 − 6.09

sin2 �13/10−2 (NH) 2.225+0.055−0.078 2.081 − 2.349 2.015 − 2.417
sin2 �13/10−2 (IH) 2.250+0.056−0.076 2.107 − 2.373 2.039 − 2.441

�/� (NH) 1.20+0.23−0.14 0.93 − 1.80 0.80 − 2.00
�/� (IH) 1.54 ± 0.13 1.27 − 1.79 1.14 − 1.90

comparing the measured neutrino �ux of a distant source with the predicted. Both distributions
rely on the amount of neutrinos produced and the ratio of neutrinos which oscillate into a
di�erent �avor along the way. The prediction of the neutrino �ux depends on the emission
and the oscillation probability, which depends on the three mixing angles, the CP phase, the
squared mass di�erences and the density of the matter along the way. Improving the precision
of these parameters, would improve analyzes for all oscillation parameters, for this type of
experiments.
The term |Δm31| is ≈ 30 times larger than the other mass terms. Thereby it has a comparably
large impact on prediction of the probability. Additionally, determining Δm2

31 with precision,
would determine the mass hierarchy. The CP phase de�nes how particles behave in comparison
to anti-particles. A determined CP phase would additionally improve the calculations of the
probability and thereby the analyzes on the other parameters. Upcoming experiments like
JUNO [1] and DUNE [27] plan to improve the measurements on Δm2

31 and �CP .



Chapter 3

Neutrino Detection with Liquid
Scintillators

In this section neutrino detection with liquid scintillators is described. The JUNO experi-
ment is introduced as an example and the Theia experiment as an outlook to future neutrino
experiments.

3.1 Liquid Scintillators

Scintillation describes the feature of a material to emit light when a charged particle or a
high-energy photon passes through. The molecules along the path get exited due to scattering
process. When they deexit the excess energy is emitted as photons. The photons are emitted in
a random direction, after a random time. The probability of the deexitation of an electron is
given by the decay function. It is de�ned with the mean lifetime � as

�(t, � ) =
1
�
⋅ exp(

t − t0
� ). (3.1)

The light yield is de�ed by the luminosity per length d
dx , in Birks theory [28]

d
dx

= 0 ⋅
dE/dx
1 + kB dE

dx

, (3.2)

with the energy E. The variable kB depends on the used material. Equation 3.2 reveals, that
the light yield depends on the energy of the particle. The light yield is not linear due to e�ects
like quenching, which reduce the luminosity.
Scintillator materials are normally clear so the emitted photons can travel through the material.
On the outer edges of the material the light can be detected with the help of Photomultiplier
tubes (PMTs). In the simplest case a scintillation detector can be used as a radiation counter.
More sophisticated setups allow the reconstruction of the particles path with help of several
PMTs at di�erent positions around the scintillation volume.

15
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One common material is linear alkyl benzene (LAB) [29]. The characteristic wavelength of the
emitted photons is 280 nm. LAB provides many bene�ts, it has a high optical transparency, a
high light yield and is comparatively cheap. Additionally, other molecules can be dissolve in
the scintillation liquid, which act as wavelength-shifters. In this case they absorb photons from
the LAB and reemit the gained energy as photons with a di�erent wavelength. This method
is used to adjust the emitted light to best �t the sensitivity range of the used PMTs. For a
combined medium the deexitation probability, introduced in equation 3.1, becomes the sum
of several exponential functions. Each represents one of the components in the mixture. The
summands are weighted by the ratio of these components.
The size of a liquid scintillation detector is limited by the transparency of the used medium. The
transparency depends on the attenuation length, which describe the path length of a particle
in a medium, after which the probability that the particle is not absorbed is 1/e. For liquid
scintillators a reasonable attenuation length is ≈ 20m. Water-based liquid scintillators reach a
much higher attenuation length, one application is discussed in section 3.4.
As liquid scintillation detector (LSD) detect charged particles or high-energy photons, it cannot
directly detect neutrinos. Neutrinos only interact weakly and can thereby in a LSD only be
detected indirectly over neutrino interactions.

3.2 Neutrino Sources

To detect neutrinos a neutrino source is needed. In experiments �ve di�erent types of neutrinos
are mainly used. These are:

• Solar neutrinos (�e) are emitted by the sun, which only emits electron neutrinos from
fusion processes.

• Supernova neutrinos are emitted in supernova explosions, where all �avors of neutri-
nos are generated.

• Atmospheric neutrinos (�e , �� , �e , ��) are produced in interaction of cosmic rays with
atmospheric atoms.

• Reactor electron antineutrinos (�e) are produced in �ssion processes.

• Accelerator neutrinos(�e , �� , �e , ��) are produced in �xed-target experiments with
proton beams.

Additionally, geoneutrinos and extra-galactic neutrinos have been observed, but are not used
as main source for neutrinos in experiments. Geoneutrinos come from radioactive decays in
the earths interior.
In this work only the reactor neutrinos are described in detail as these are used to observe
neutrino oscillations with JUNO.
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Figure 3.1: Reactor anti-electron neutrino energy distribution for the di�erent initial atoms
[31] for a commercial reactor. The decreasing distribution for all four initial atoms display
the neutrino �ux generated by nuclear reactors. The black curve shows the cross section for
the inverse � decay. The mountain like distributions show the energy distribution of reactor
neutrinos, weighted with the cross section.

3.2.1 Reactor Neutrinos

Reactor neutrinos are produced in nuclear reactors, where energy is released from �ssion. In
nuclear reactors often neutron induction is used to trigger the decay of the fuel nuclei. In
modern reactors the elements U235, U238, P239 and P241 are used as fuel atoms, these are all
unstable. When a free neutron is absorbed by a nucleus, which brings the nucleus into an
excited state, the nucleus decays shortly afterwards. Unstable fragments of the nucleus decay
with the � - decay by emitting an electron anti-neutrino �e . For the example U 235 approximately
six electron anti-neutrinos are emitted per �ssion. One nuclear core of a �ssion reactor emits
thereby in total approximately 1020�e/s [30]. In �gure 3.1 the energy distribution of reactor
electron neutrinos, weighted with the cross section of the inverse � decay is displayed. The
energy varies between ≈ 1.8 and ≈ 9MeV. The peak is for the di�erent fuel atoms between 3
and 4MeV. The inverse � decay is used as detection reaction in LSD. Therefore, the weighted
energy distribution is the energy distribution of the reactor neutrinos detected in an LSD.

3.3 JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) is a liquid scintillation neutrino
detector in Jiangmen, China. JUNO is currently under construction and aims to start the �rst
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Figure 3.2: Schematic JUNO detector [1], displaying the detection volume with several detectors.

runs in 2021. This section in mainly base on JUNOs technical report[1]. The JUNO experi-
ment consists of three di�erent detectors: the main liquid scintillation detector (LSD), a muon
tracker (MT) and a water Cerenkov detector (wCD).
The LSD itself is a spherical volume with a diameter of 35.4 m �lled with 20 kt linear alkyl
benzene (LAB). Around the scintillation chamber PMTs are mounted on a steel structure. Three
di�erent PMT types are used. This results in a total coverage of approximately 75% and a
designed energy resolution of 3%/

√
E[MeV]. The setup is schematically displayed in �gure 3.2.

The scintillation volume is submerged in a the water tank, which is marked in blue. To further
suppress the muon background JUNO is placed roughly 700 m under ground.
The main LSD is submerged in a cylindrical water pool. It serves two purposes, on the one hand
the water shields the LSD from radioactive background naturally occurring in the surrounding
rocks. On the other hand it is a Cerenkov light detector, which can detect cosmic muons
entering the main detector from any direction. The Cerenkov light is detected by 1600 20-inch
PMTs, which are mounted on the outer walls of the water basin. On top the muon tracker is
positioned. This tracker uses plastic scintillator strips and tracks passing muons. Both muon
detectors are used as vetos to reduce background.
JUNO’s main goal is to determine the mass hierarchy. Therefore, electron anti-neutrinos �e
from two reactors are observed. The amount of electron anti-neutrinos �e produced in the
reactors is known. The amount of missing electron anti-neutrinos �e tells how many neutrinos
changed �avor and thereby the oscillation parameters can be measured. The reactors are
both in approximately 53 km distance from JUNO, with the mean neutrino energy of ≈ 3MeV.
The energy spectrum of the reactor neutrinos which will be detected at JUNO is displayed in
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Figure 3.3: The relative shapes of the reactor anti-neutrino distribution for the two possible
mass hierarchies.

�gure 3.1. As JUNO uses the inverse � decay as the detection process, anti-electron neutrinos
within the energy range of ≈ 2 − 9MeV can be detected.

3.3.1 Research Agenda

JUNO’s main research goal is to determine the neutrino mass hierarchy and measure the
neutrino oscillation parameters sin2(�12) and Δm2

12.
JUNO is measuring the reactor anti-neutrino spectrum within the energy range of ≈ 2 − 9MeV
at a medium baseline of 53 km. JUNO plans to observe the shape of the reactor anti-neutrino
distribution with regards to the ratio of distance to anti-neutrino energy L/E. In �gure 3.3 the
shape of this distribution is plotted for the normal and inverted mass hierarchy. With JUNOs
excellent energy resolution, the two possible distributions can be distinguished and the mass
hierarchy thereby determined. JUNO is predicted to be determine the mass hierarchy with a
3 � uncertainty in approximately six years.
Additionally, JUNO is able to precisely measure a number of neutrino oscillation parameters,
due to its high energy resolution. The JUNO collaboration claims to measure sin2(�12) and
Δm2

12 with a precision better than 1%.
Besides the reactor neutrinos, JUNO will also detect neutrinos from other sources. JUNO will
be able to observe neutrino bursts from nearby supernovas, this is especially interesting for
low-energy neutrino and astro-physicists. Additionally, these measurements can contribute to
multi-messenger analysis of cosmic objects. Moreover, JUNO is sensitive to solar, atmospheric
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and geoneutrinos, giving in total a broad range of interesting observations for neutrino, astro-
and geophysicists.

3.3.2 Signal

All three neutrinos and their anti-particles can be captured through di�erent processes with
di�erent signals. Here electron anti-neutrinos �e fare detected.
The electron anti-neutrino �e can, as all neutrinos, only be measured over interactions inside
the detector. The detection reaction for this case is the inverse � decay (IBD):

p + �e → n + e+ (3.3)

The electron anti-neutrino �e interacts with a proton, which results in a neutron n and a
positron e+. The positron quickly deposits its energy in the detector and annihilates prompt
into two 511 keV photons. The neutron scatters in the detector until being thermalized, thereby
it deposits its energy inside the detector. Afterwards, the neutron is captured by a proton in a
nucleus. Due to the extra neutron the nucleus is highly excited and emits discrete energy after
a certain time. Both time and energy depend on the nucleus. In the JUNO detector the neutron
capture emits 2.2MeV after 200 �s. This characteristic coinciding measurements reduce the
background. Most of the energy of the reactor anti-neutrino is transferred to the positron. The
energy spectrum described in �gure 3.3, can be obtained from the reconstructed anti-neutrino
energies.
At JUNO 83 inverse � decays/day, from reactor neutrinos, are expected.

3.3.3 Background

One big background in scintillation detectors are cosmic muons. On sea level approximately
0.001m2/s cosmic muons pass. Muons cause ionization in the scintillator and are thereby one
of the biggest backgrounds. Many scintillation detectors are placed underground to reduce
the cosmic muon �ux. Additionally, muon detectors can be placed around the scintillator, as
at JUNO. With the timing of cosmic muons entering the detector, a�ected measurements can
be vetoed. But the muons are no direct background for reactor neutrinos. Still they increase
considerably the dead time of a scintillation detector. At JUNO the muon rate is expected to be
≈ 3.5Hz with an average energy of 215GeV.
The main backgrounds of JUNO considered in its technical report [1] are the following:

• Accidental background: These are independent incidents, which mimic in combina-
tion a IBD signal. These incidents can be caused by radioactivity, cosmic isotopes and
spallation neutrons. The expected rate is ≈ 5.7 ⋅ 104 /day.

• Geoneutrinos: Electron anti-neutrinos from the earth’s interior, are expected for the
JUNO site with a rate of ≈1.5 /day.
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• Fast neutrons: Bypassing cosmic muons produce energetic neutrons. This can lead to a
fast neutron background, if they scatter o� a proton and are afterwards captured. The
estimated rate is ≈ 0.1 /day.

• 13C(� ,n) 16O background: Radioactive decays of U and Th can emit alphas, which could
interact with 13C in the liquid scintillator, this could lead to a correlated background,
with a rate of ≈ 0.01 /day.

• Cosmogenics: Are explained in more detail up next, as they are relevant for the main
motivation of this work.

Cosmogenics

Energetic muons often produce electromagnetic and hadronic showers along the path. Inside
the showers radioactive isotopes can be produced. 12C interacts with the electromagnetic and
hadronic processes, thereby radioactive isotopes with Z ≤ 6 are produced. These can decay
by emitting a neutron and a positron or electron. As the neutrinos are identi�ed over an
annihilating positron and a captured neutron, the neutrino cannot be distinguished from this
decay channel, if the timing matches.
The radioactive isotopes 9Li and 8He follow this behavior at JUNO. They can decay over a
neutron and the � decay, with a half-life of 0.178 s and 0.119 s, respectively. There are more
isotopes at JUNO, which lead to this type of background, but they have a much smaller
contribution and are therefore not explicitly mentioned here. At JUNO the rate for this type of
background is estimated to be 84 /day. This magnitude is enormous as the expected rate of IBD
from the reactor neutrinos is only 83 /day.
The decay of the elements Li9 and He8 is the second biggest background for the reactor neutrinos
at JUNO.

3.3.4 Background suppression methods

In the JUNO detector a huge number of background events is expected, with only a small
number of reactor neutrino events, which need to be identi�ed. To suppress the background
the events have to �t into certain constraints. These describe the characteristics of the signal
event, in order to cut away the background.
To keep only events with the reactor neutrino characteristics the following cuts are used:

• �ducial volume cut: r < 17m, this cut is included to suppress the accidental back-
grounds,

• prompt energy cut: 0.7 MeV< Ep <12 MeV,

• delayed energy cut: 1.9 MeV< Ed <2.5 MeV,

• time cut: between prompt and delayed signal: Δt < 1ms,
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• distance cut: between prompt and delayed signal: Rp−d < 1.5m.

Additionally, a muon cut is used to eliminate the fast neutron and the cosmogenic background.
Therefore, the surrounding muon trackers are used for a muon veto with the following criteria:

• muons detected in the water veto the liquid scintillator for 1.5ms,

• well tracked muons in the water Cerenkov detectors and the central detector lead to a
veto within the radius r of r� < 3m around the track for t� < 1.2 s,

• mouns which can not be tracked veto the whole sphere for 1.2 s.

The e�ciency of these cuts is listed in table 3.1. As important it is for a cut to cut out as much
of the background as possible, it is additionally extremely important to keep the signal events,
especially for rare events like neutrino processes.
Accidental background are the main background source. Most of them are discriminated by

Table 3.1: Di�erent background sources and their occurrences with the di�erent suppression
methods are displayed. The prompt energy, delayed energy time and distance cut are com-
bined here, with the name "T,E and d cut". The background source minor is a summation of
geoneutrinos, fast neutrons and 13C(� ,n) 16O background. All rates are displayed in events per
day.

Method IBD e�ciency IBD [/day] 9Li + 8 He [/day] Accidental [/day] Minor [/day]
no - 83 84 ≈5.7 ⋅104 1.7
Fiducial cut 91.8% 76 77 410 1.6
T, E and d cut 95.7% 73 71 1.1 1.5
Muon veto 83% 60 1.6 0.9 1.3
Combined 73% 60 Σ 3.8

the �ducial cut, diminishing it to about 400 events per day. The distance cut and the muon veto
decrease the rate further.
The cosmogenics are predicted to occur with a rate of 84 /day. With the help of all cuts this rate
is lowered to 71 /day. The muon veto eliminates further cosmogenics, as these are triggered by
showers made by passing cosmic muons. This lowers the expected cosmogenics rate further.
After all cuts and vetos the rate is 1.6 /day.
The minor backgrounds are also lowered from ≈ 1.7 to 1.3 /day, with help of these background
suppression methods.
The downside of these cuts is, that also signal events are cut of, if they �t into the given
constraints. This lowers the expected IBD rate from 83 /day to only 60 /day after all cuts and
vetoes. The biggest chunk here takes the muon veto with 13 events being missed due to the
muon veto and corresponding dead time of the liquid scintillator detector. This is an IBD
e�ciency rate of 83% for the muon veto and a combined e�ciency of 73% for all cuts and
vetoes.
With the IBD rate of 83 /day and the described background and cuts, JUNO is expecting to
falsely identify 3.8 background events per day as reactor neutrinos, this is a ratio of 6% of the
measured events.
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Potential of further Background suppression methods

As illustrated the background suppression is a crucial part for JUNOs precision measurements.
In the implemented cuts and vetoes 23 out of 83 IBD events/day, which are 27.7%, are lost. The
lowest e�ciency on the IBD has the muon veto. With more sophisticated suppression methods
the e�ciency of JUNO could be increased.
One promising method is the Quadratic Reconstruction (QR) method by D. Meyhöfer [2]. Heav-
ily simpli�ed speaking, this method basically reconstructs the detected scintillation photons
to their point of emission. With the sum of all reconstructed emission points, showers can be
identi�ed and located inside the detector.
The QR gives the opportunity to locate over 80% of those showers, where > 400MeV energy
was deposited, with a precision of ±0.35m. With a background suppression based on this
method, JUNO could detect ≈ 10% more signal. This increase is tremendous.
The here presented work basically follows the same goal, developing a method to locate show-
ers on muon tracks in a liquid scintillator, with the motivation of background suppression
for reactor neutrino detection. But in contrast to the QR, which uses classical computation
techniques, here machine learning methods are used. Working on the same problem as an
already successful method is in no way irrelevant. On the one hand having a second method,
which independently comes to the same results is a validation of measurement or reconstruc-
tions. On the other hand, the QR works with look up tables. This is a common method to
fasten up computations on complicated calculations. But it has the downside, that theses tables
can use lots of memory, need to be kept up to date or newly made for new applications. In
contrast to machine learning techniques, these typically do not need much memory space. No
lookup tables need to be computed or fostered. Additionally, taken data can be used to improve
the algorithm along the way, improving the prediction with time of use. Furthermore, the
machine learning methods are versatile and with some more new training one architecture can
be recycled for a similar application. All in all machine learning techniques appear to have
great bene�ts for a reconstruction task like this.

3.4 Future Detectors - Theia

Even tough JUNO is still under construction, there are plans on new neutrino detectors, with
superior features. Especially the latest developments in liquid scintillators and photo detection
give new possibilities for neutrino detectors. Theia [32, 33] is a planned experiment at the
Sanford Underground Research Facility (SURF) as long baseline experiment. As neutrino
source the LBNF neutrino beam is supposed to be used, with a baseline of 1300 km. By
combining the bene�ts of liquid scintillation with water Cerenkov light and a new generation
of advanced photo detection methods, Theia is proposed to reach a new level of sensitivity. In
the publications [32, 33] di�erent setups are being discussed, a smaller one with a total volume
of 25 kt and a �ducal volume of 17 kt (Theia 25), and a bigger one with a total volume of 100 kt
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and a �ducial volume of 70 kt (Theia 100). Up to now Theia is a proposed future experiment,
without a concrete plan for its realization.

3.4.1 Outstanding Features

The concept of Theia is to combine liquid scintillation detector (LSD) with water Cerenkov
detector (wCD) bene�ts in a large detector of several kilotons. The Cerenkov light has the
bene�t that, due to its distinct pattern, the direction of charged ultra-relativistic particle tracks
can be reconstructed. Additionally, water is more transparent than scintillation liquid, which
makes larger detectors possible. With Liquid Scintillators a low energy threshold and a good
energy resolution can be achieved. To successfully combine Liquid Scintillation and wCD
methods a separation of both photon sources is important. Hit pattern, timing and wavelength
can be used to separate the two photon sources. Theia proposes two methods to achieve this.
On the one hand the waterbased Liquid Scintillator (wbLS) and on the other advanced photo
sensors, called Large Area Picosecond Photodetectors (LAPPDs).
WbLS [34] are a combination of water and liquid scintillator. Liquid Scintillator is dissolved in
water, the mixing ratio gives the opportunity to tune the medium to best �t the experimental
setup and research goals. The wbLS achieve an increased transparency with a time response
similar to LSD.
LAPPDs [35] with an area of 20×20 cm2 and a time resolution of 50 ps are used. Their advan-
tage are the short time resolution and the discrete spatial resolution. LAPPDs are based on a
Multi-Channel Plate technology, which allows a spatial resolution of 5mm. The combination
of a great time and spacial resolution make LAPPDs an impressive technology, which enables
great opportunities for event reconstruction.
Besides the technological innovations Theia additionally relies on strong reconstruction algo-
rithms. Therefore, classical approaches like the Topological Track Reconstruction [36], as well
as machine learning techniques could be used. Using machine learning methods to reconstruct
muon tracks, as presented in this work, could become interesting for Theia as well.

3.4.2 Physics Program

Theia is designed to work in three stages. As the properties of the wbLS are dependent on
the ratio of water to LS, it can be adjusted to �t the experimental setup. By changing the
ratio, Theia can perform in stages observing di�erent research questions. At �rst Theia is
planned to work as a long baseline neutrino experiment, with distance of 1300 km from the
LBNF muon neutrino beam at Fermilab. In this period Theia should measure the neutrino
oscillation parameters like the CP violation phase �CP and deliver further measurements pf
the mass hierarchy. The sensitivity for �CP and the mass hierarchy of the Theia 25 setup is
predicted to be compatible with the sensitivity of a single DUNE module, under the assumption,
that Theia reproduces the detector performance of water Cerenkov Detectors.
Afterwards, by increasing the liquid scintillator concentration Theia would increase its sensi-
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tivity in the low energy region. Thereby, Theia would be able to additionally observe solar,
supernova and geo-neutrinos. Furthermore, with some adjustments and expansions [32], Theia
would be sensitive to observe the neutrinoless ��-decay.
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Chapter 4

Graph Neural Networks

Graph neural networks (GNN) are a special type of neural networks, both are introduced in this
section. Firstly, neural networks are introduced as they are the basis of GNN. Many methods
used for neural networks are required for GNN as well. Afterwards, the GNN are introduced.
These o�er the possibility to include metrics in the data and relationships between data points
can be included in the architectures.

4.1 Introduction into Neural Networks

Neural networks are inspired by brains, which consist of neurons. The foundation for neural
networks has already been set in the 1950’s, but only with the improvement of computing
power they gained the great popularity and importance they have today. This section is based
on [37].

4.1.1 Structure

Neural networks consist of arti�cial neurons. The neuron takes some inputs xi and produces
output y . Therefore, the input is multiplied by weights wi and summed up, an additional bias
b or an activation function f can alter the output. For example absolute could be used as
activation function, if only positive output is wanted. These properties are summarized in a
schematic node, displayed in �gure 4.1. The combination of several neurons forms a neural
network. These are structured in layers. Each layer consists of at least one neuron. The output
of the neurons in one layer becomes the input of the neurons in the next layer, while the output
of the last layer is the output of the network. The layers between input and output layer are
called hidden layers.
A straight forward approach is the fully connected network. In this setup all neurons from
one layer make the input for all the neurons in the next one. Depending on the task di�erent
network styles are used, any combination of layers and neurons is possible. Figure 4.2 shows
an example of a fully connected neural network with an input layer, two hidden layers and an

27
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Inputs OutputNode

Figure 4.1: One schematic node, the inputs xi are weighted and summed, a bias b can be added.
The sum can be altered by an activation function f , this makes the output of the node. The
output can be passed to several other nodes.

output layer. The hidden layers have three nodes each. For the input two nodes are used and
for the output one. In the in- and output one node represents one number.

Input Output

Figure 4.2: Fully connected neural network with two hidden layers, three nodes each. The
input layer consists of two nodes, while the output layer has one.

4.1.2 Training

The input of a neural network propagates through the network forming the output in the last
layer. While learning all weights and biases in the network are adjusted, till the output matches
the label. The label de�nes the desired output and how well these match is de�ned by the
loss function. During the training the output of the loss function, so called loss, is minimized
by adjusting the trainable parameters. The trainable parameters of a neural network are the
weights and biases of its nodes.
The loss function used in this work has several components, among themmean squared error loss
and cross entropy loss. Additionally, a geometric loss function is used, which will be introduced
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in section 4.3.
The mean squared error loss is a widely used loss function. With y as prediction and t as label
of N considered samples, it is de�ned as

LMSE(y, t) =
N
∑
i

(yi − ti)2

N
. (4.1)

This loss function calculates the error of every output in comparison to the label, squares it
and takes the mean.
For classi�cation tasks the cross entropy loss can be used. In machine learning classes are often
implemented with �oats. For example an exclusive binary class system can be implemented
with one parameter in label and prediction. This parameter can be de�ned as 0 for class A and
1 for class B. The network predicts the label ∈ [0, 1] resembling the a�liation to the classes A
or B. The cross entropy loss is de�ned as

LCrossEntropy(y, t) = −
1
n
∑
i
[ti ln(yi) + (1 − ti) ln(1 − yi)] . (4.2)

Here is again t the label and y the prediction, in the class form y, t ∈ [0, 1] and n the number of
samples.
To optimize the networks output to best �t the labels, the biases and weights are gradually
altered, by an optimizer. There are di�erent optimization methods, but most of the optimizers
rely on gradient descent. The idea of gradient descent is, to alter the weights and biases with
the goal of a decrease of the loss function. Or in other words in the direction of declining slope
on the loss function. This can be archived with

w′ = w − �
)L
)w

(4.3)

and
b′ = b − �

)L
)b
. (4.4)

The derivation of the loss function L with respect to its variables biases b and weights w de�nes
the slope. The new variable, marked with a dash, is given by the original one plus the negative
slope times the step size �. � is the learning rate and de�nes how big the alterations on biases
and weights are. The learning rate has to be chosen wisely, as a to big choice may over step
the minimum of the loss function, while a small learning rate takes a lot of training time to
reach it.
While learning, all weights and biases of all nodes need to be updated. As neural networks can
easily hold some thousand nodes, the number of trainable parameters, which are the weights
and biases, can be large. To e�ciently calculate and apply them, the backpropagation algorithm
is used. The output alj of one node j in layer l is de�ned as, the weighted sum of inputs w l

j ⋅ al−1i
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(which are outputs of the layer before) with an additional bias b

alj = f (∑
i
w l
j,ia

l−1
i + blj ) = f (z

l
j ). (4.5)

zlj describes the sum inside the activation function f and will be used later on. The sum sums
over all nodes i in layer l − 1. In vector representation al denotes all outputs of layer l. The
bold variables are vector representations and W l is the weight matrix

al = f (W l ⋅ al−1 + bl). (4.6)

As the output of one layer becomes the input for the next one, this equation can describe
the whole neural network. The output y of a neural neural network with three layers can be
described as

y = f (W l ⋅ f (W l−1 ⋅ f (W l−2 ⋅ x + bl−2) + bl−1) + bl). (4.7)

As de�ned earlier the loss function L is a function of predicted label y and true label t . Thereby,
the loss function L(y, t) can be derived with respect to the weights w, as needed in equation
4.3 and 4.4. For adapting the network every gradient for every weight and bias would need
to be calculated, but the backpropagation algorithm calculates the gradients for the weighted
input of each layer. The error is de�ned as

� lj =
)L
)zlj

=
)L(f (z))
)alj

)f (z)
)zlj

. (4.8)

Which can be described as � l in vector representation for the layer l

� l = ∇alL ⊙ f ′(zlj), (4.9)

here ⊙ resembles the element-wise product. With this equation the error for the next layer can
be de�ned recursively

� l = ((W l+1)T� l+1) ⊙ f ′(zlj). (4.10)

Back in equation 4.3 and 4.4 the adaptation of the trainable parameters w and b are de�ned,
these can now be converted with the de�nitions of equation 4.8. Firstly, the adaption for the
bias b

)L
)blj

=
)L(f (z(b)))

)blj
=
)L(f (z(b)))
)f (z)

)f (z(b))
)z

)z(b)
)blj

= � lj . (4.11)

As )z(b)
)blj

= 1 the bias error resembles the derivation in 4.8. Secondly, the adaptions for the
weights w

)L
)w l

ij
=
)L(f (z(w l

ij)))
)w l

ij
=
)L(f (z(w l

ij)))
)f (z)

)f (z(w l
ij))

)z
)z(b)
)w l

ij
= al−1j � li . (4.12)

The derivative of z with respect to w l
ij , gives the factor al−1j , which is the output of the node j

in layer l − 1. Again here the de�nition of equation 4.8 is used.
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The backpropagation algorithm needs the de�nition of these equations. In stead of calculating
every gradient in a network it uses the error � l . To de�ne the algorithm only four steps are
needed. Firstly, the data needs to be propagated in forward direction through the network to
produce the prediction, therefore all nodes in all layer need to be evaluated. Afterwards, the
gradients on the prediction need to be calculated with equation 4.9. Additionally, the errors for
all layers need to be calculated with equation 4.10, here the recursive de�nition of the layer
error comes handy, as some parts of the equation can be reused from the last layer. Lastly, the
weights w and biases b need to be adjusted. As the alteration is de�ned by the error � l , the
values can be reused from the last step, as they are components of the error vector of the given
layer. With this method much less calculations have to be done compared to calculating every
alteration by itself. Thereby, a lot of computing time is saved. The backpropagation algorithm
is displayed with pseudocode in algorithm 1.

Algorithm 1: Schematic backpropagation algorithm using the gradient descent
method to adjust the learnable parameters w and b.
1 backpropagation(x, t):

Input :data x, label t
2 Feed forward:
3 calculate the outputs zl and al for all layers l and the prediction y
4 zl ⟵ zl = W l ⋅ al−1 + bl
5 al ⟵ al = f (zl)
6 y = f (W l ⋅ f (W l−1 ⋅… f (W 0 ⋅ x + b0) … + bl−1) + bl)

7 Error on prediction:
8 calculate the error of the output of the last layer
9 � l = ∇alL(y, t) ⊙ f ′(zlj)

10 Error on layers:
11 calculate the error of the other layers
12 � l = ((W l+1)T� l+1) ⊙ f ′(zlj)

13 Update lernable parameters:
14 adjust all weights w and biases b
15 bl ⟵ bl = bl − �� l
16 wl ⟵ wl = wl − �� l(al−1)T

17 end

4.1.3 Monitoring and Evaluation

During the training, the optimizer can optimize into a training data set speci�c local minimum
of the loss function, which does not represent the data set as a whole. This problem is called
over �tting. Over �tting is reached, when a network performs better on the training data set
than on a comparable unknown data set. In this case, the network does not generalize, but
learns speci�c data characteristics, which are not relevant for the prediction. To avoid this the
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loss is monitored during the training. To validate the results from training a second data set,
the so called validation data set, is used. The network predicts labels for the validation data,
which are analyzed with the loss function to obtain the validation loss. While the validation
loss and the training loss do not diverge, the network generalizes the data.
Neural networks are trained in epochs. One epoch resembles working through the data set
once. After every epoch loss and validation loss can be compared, to check if over �tting occurs
or the loss stops decreasing. In this case, the training can be stopped, because the network
generalized the data set with the given constraints.
When a model is trained the results need to be evaluated in order to analyze the prediction
strength. As the loss function describes the di�erences between the prediction and the label, a
small loss value is a hint for a good prediction. In general a prediction with a loss value of zero
would be perfect for the given constraints.
Depending on the prediction and the reconstruction goals di�erent evaluation methods are
useful. For regression tasks a direct comparison of prediction and label is often used. For
example, if the goal is to predict coordinates, the distance between reconstructed and label
coordinate, could be an appropriate description of the prediction quality.
For classi�cation tasks the quality of the prediction can be analyzed by the reconstruction
quality of the classes. One method to evaluate classi�cation algorithms is the ROC-Curve.

ROC Curve

The receiver operating characteristic (ROC) curve is a method , which shows how well two
classes are separated. As already mentioned two classes can be described by one parameter,
which is 0 for class A and 1 for class B. Neural networks usually do not predict only zero or
one, but �oats resembling how con�dent the network is with the class a�liation. Somewhere
in the range between 0 and 1 a threshold needs to be set, to de�ne where class A ends and
class B begins. To produce the ROC curve the predictions are evaluated for thresholds in range
[0, 1], with regard of the ratio of correctly predicted events in the two classes A and B. The
results are plotted with the margin of correctly assigned for class A on the x axis and correctly
assigned for class B in the y axis. For a perfect separation the curve has a sharp edge in the
upper right corner, which makes the area under the curve (AUC) close to 1. If the predicted
values are randomly distributed ∈ [0, 1], the area under the curve becomes 0.5.
The area under the ROC curve is a good method to compare di�erent algorithms or networks
with regards to their separation quality of two classes. In �gure 4.3 an example ROC curve is
shown with the corresponding AUC. The displayed ROC curve shows a rather good separation
of the classes A and B.
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Figure 4.3: A ROC curve showing the separation between class A and B. To produce the ROC
curve the predictions are evaluated for thresholds in range ∈ [0, 1], calculating the ratio of
correctly predicted for both classes. These ratios are marked in orange in the plot. The blue
line shows the ROC curve which is de�ned by the ratios. The AUC shows how well the two
classes are separated in the prediction.

4.2 Graph Neural Networks (GNN)

Graph neural networks (GNN) were �rst introduced in 2009 [38]. These are neural networks
which use graphs instead of layers of neurons. The bene�ts of using graphs is their ability
to use relationships in the data. This makes graph networks very useful for classi�cation or
clustering tasks.

4.2.1 Structure

A graph consists of edges ek and nodes �i . Undirected edges have no directional dependency,
while directed edges only contribute in one direction. In �gure 4.4 a graph with eight nodes
is shown. Some edges are undirected, others directed, displayed by single or double headed
arrows. One node has a self loop, which is an edge onto itself. This graph could for example
represent a social network, with the nodes standing for persons and the edges displaying their
relationships.
The data used for graph networks needs to be transferred in the graph structure beforehand.

There are many di�erent methods to operate on graphs. In general the features x�i of a node �i
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Figure 4.4: Graph with eight nodes and some edges represented by circles and arrows. This
graph has directed and undirected edges and one self-loop.

are updated in regards of the connected edges and neighboring nodes. In the simplest case the
node features could be updated by forming the weighted sum for the features of all connected
nodes. The number of features and the graph can be altered after every iteration. Every new
iteration is called layer and can follow di�erent rules, just like with classical neural networks.
The data is embedded in the graph structure. Every node holds node features, which resemble
data points. A graph holds a set of data points with their connections over edges.
After some layers the data usually needs to leave the graph structure, either it directly gives
the output or it is used by other neural network methods, which do not use the graph structure.
Therefore, pooling methods are used. These need to be invariant under translation. This is
important because the order of nodes can di�er or be changed during training. Pooling is
in general used on the feature space returning one value per feature, regardless of the total
number of nodes. Typical pooling methods are maximum, minimum, standard deviation or
average.

4.2.2 Graph Convolution Networks (GCN)

Graph convolution networks (GCN) are convolutional networks. Convolution is widely used for
neural networks, especially in image recognition. Just like in neural networks the convolution
method uses a �lter to analyze several nodes, which creates the output of one. In image
recognition the �lter uses NxM pixels to calculate the output for one of the neurons. Graph
networks use their structure in convolution, the neighboring or connected nodes are used to
calculate the output.
GCNs have the goal to best reconstruct the label for a given input, after some adjustments in
training. For GCNs this is done with graphs, which take as input a feature matrix X in the
graph representation. The matrix has the dimensions N × D for N nodes with each D features.
The feature matrix can be understood as input for the graph. Additionally, the graph structure
needs to be de�ned, usually by the number of nodes and the edges connecting them. The
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adjacency matrix A describes this. The output of the GCN is Z , with dimensions N × F . F
describes the amount of output features of the output nodes N . The output of any given GCN
layer l can be described recursively as

H l+1 = g(H l , A) (4.13)

with H 0 = X , H L = Z and L as the total amount of layers. For di�erent GCN propagation
methods di�erent functions g can be used. Here a very simple de�nition of g is considered

g(H l , A) = f (AH lW ) (4.14)

with W l as a weight matrix and f as activation function. The activation function has the same
properties as for neural networks. This de�nition can already be used as a propagation rule
for GCN, but has two shortcomings. Firstly, the adjacency matrix A does not hold self-loops.
Thereby every node considers all features of all neighboring nodes, but not its own to calculate
its output. This can be easily �xed by adding the identity matrix I, thereby A′ = A+ I. Secondly,
the propagation is not normalized. To do so the adjacency matrix A can be multiplied to the
diagonal node degree matrix D, which normalizes every row in the product to one. With D−1A
or D−1/2AD−1/2 this task is tackled. In practice the latter method is usually used, as it does not
average over neighboring nodes. With these alterations the propagation rule is

g(H l , A) = f (D−1/2A′D−1/2H lW l), (4.15)

which is introduced in [39] as Graph Convolution. There are di�erent convolution methods
on graphs, for this work Graph Convolution (GC) and Edge Convolution (EC) from the dgl
library are used. Both implementations are shortly introduced up next. After propagating
the input through the graph network again a backpropagation method is used to adjust all
trainable parameters. As for neural networks the gradient descent method is widely used. The
backpropagation thereby in principle works as for neural networks, displayed in algorithm 1.

Graph Convolution

GC is introduced in [39]. The used implementation of GC only di�ers in an additional bias b,
from the discussed version in equation 4.15. Additionally, here the propagation is displayed
in vector representation. The node �i in layer l is updated with a weighted sum of the set of
neighboring nodes  (j) and a bias b

ℎl+1�i = f ( ∑
j∈ (j)

1
cij
ℎl�j ⋅W

l + bl). (4.16)

The contributions of the neighbors are weighted with the weight matrix W l for layer l and
normalized with cij =

√
| (i)|

√
| (j)|. The weights W l and biases b are the trainable parame-
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ters, which are adjusted during training. Additionally, an activation function f can be used. In
this implementation no activation function is used by default.

Edge Convolution

The EC method is proposed in [40]. In this publication the method is used dynamically, which
means the nodes of the graph are rearranged with regards to the next neighbors in feature
space. The feature space is de�ned as the n-dimensional space of the nodes features. Being
dynamic is not essential for the EC method, which can also be used statically.
The update method of the nodes ℎl�i is

ℎl+1�i = max
j∈ (j)

(Relu(� ⋅ (ℎl�j − ℎ
l
�i ) + � ⋅ ℎ

l
�i ))) (4.17)

The nodes are updated every layer l in consideration of all neighboring nodes ℎl�j in j . � and
� are the learnable parameters, which are adjusted during training. Neighboring refers here to
a connection between two nodes with an edge. Here Recti�ed Linear Unit (ReLU) is used as
activation function. Relu is de�ned as Relu(x) = max(0, x), projecting all negative values to
zero, while the positive values are projected onto itself.
To use this method dynamically the graph is updated after every layer with the k-nearest
neighbor method. This method �nds the k nearest neighbors of each node of the graph in
feature space. Points which are close in the feature space have very similar features and are
thereby similar. The nodes are connected to these k nearest neighbors over edges. This method
rearranges the connections between the existing nodes in an updated version of the graph.
Here only a very brief introduction into working with graph networks is given. More detailed
information on graph neural networks can be found in [41].

4.3 Geometric Loss Function

In this work a photon emission distribution is reconstructed. The already introduced loss
functions do calculate the di�erence between label and truth element wise and thereby do not
take into account the geometric structure of the problem. One method using this is the earth
mover’s distance. In simple words the earth mover’s distance describes how one distribution
can be rearranged into the other with a minimal "e�ort". This is de�ned by the cost martix.
In this work a loss function is used, that uses the metrics of the distributions by using the
Sinkhorn divergences. This method is used as implemented in the python library geomLoss
[42]. The implementation and math of the used loss function is discussed here, while the used
properties and the adaption to the given setup is showed in chapter 7. The following section is
mainly based on [42], as the geomLoss library and thereby the used loss function is based on
the given publication.
The Sinkhorn divergences interpolates between Optimal Transport (OT) and Maximum Mean
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Discrepancy (MMD). Both methods measure the distance between two probabilities by using
the geometry of the underlying space. The methods are shortly introduced by using unit-mass,
positive empirical distributions �, � ∈+

1 () on the feature space  .
One computationally e�cient method to approximate the OT costs is the entropic regularization.
The used de�nition of the OT is given, for � > 0, by

OT�(�, �)
def= min

�1=�,�2=� ∫2
C d� + �KL(� |� ⊗ �)

with KL(� |� ⊗ �) def= ∫
2

log(
d�

d�d�) d�.
(4.18)

C(x, y) is the symmetric positive cost function. In this implementation the cost function
C(x, y) = ‖x − y‖2 on  ⊂ ℝD is used. The integral minimized over the couping measures
� ∈+

1 (2), with (�1, �2) describing the marginals. KL(� |� ⊗ �) is an entropic barrier added to
the linear OT. The factor � weights the entropic barrier. With � set to zero, the entropic barrier
is not considered. In this case the quadratic Wasserstein distance is obtained for the given
de�nition of C(x, y). With the cost function de�ned as C(x, y) = ‖x − y‖, OT0(�, �) describes
the Earth movers distance. An additional entropic barrier was �rstly used in [43]. This addition
makes it possible to calculate OT�(�, �) e�ciently for � > 0. Thereby, the possibility is obtained
to e�ciently compute a geometric loss, that samples between measures.
The MMD method uses a simpler approach by de�ning a positive de�nite kernel k(x, y) on
the feature space  . The kernel describes how the distance between two points in feature
space is calculated. In euclidean space  ⊂ ℝD for example the Gaussian kernel could be used
k(x, y)=exp(−‖x −y‖2/2� 2). The kernel loss is de�ned as the integral of k over  , with � = � − �

Lk(�, �)
def=
1
2
‖� ‖2k

def=
1
2 ∫

2
k(x, y)d� (x)d� (y). (4.19)

In case k is universal, ‖ ⋅ ‖k metricizes the convergence in law.
The Sinkhorn divergence unites the bene�ts of OT and MMD. To do so the following de�nition
is used

S�(�, �)
def= OT�(�, �) −

1
2

OT�(�, �) −
1
2

OT�(�, �). (4.20)

S�(�, �) interpolates between both methods, converging to OT for � → 0 and converging to
MMD for � → + inf. Mathematically de�ned as follows

S�(�, �)→
⎧⎪⎪
⎨⎪⎪⎩

OT0(�, �) � → 0
1
2 ‖� − �‖

2
−C � → + inf .

(4.21)

With equation 4.20 the sinkhorn divergences between two identical distributions is zero,
S�(�, �) = 0. The reason why equation 4.20 has been introduced is the entropic bias. In simple
words, the gradients of OT�(�, �) derive a distribution � to a shrunk measure of the target
distribution � , if � is a Dirac distribution located at the mean value of � . Equation 4.20 was
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introduced to �x this problem, by mimicing the structure of a squared kernel norm, as used
with MMDs. S� is a positive de�nite loss function which is convex and o�ers metrization of the
convergence in law. These properties are displayed in detail and prooven in [42].



Chapter 5

Simulation and Data

The goal of this work is to develop machine learning methods, which can reconstruct a muon
path and a corresponding shower in a liquid scintillation detector (LSD). The muon path is
supposed to be reconstructed �rstly with coordinates. In the second step the architecture is
supposed to be adjusted to reconstruct the photon emission distribution caused by a muon and
a shower in the detector. Therefore, the voxel representation is supposed to be used. The input
for the machine learning methods is the light detected by the PMTs on the walls of a LSD. The
needed data is simulated and the simulation and data is described in this chapter.
To train neural networks a lot of data is needed, which is already analyzed and categorized
depending on the task the network is learning. In this speci�c case the real data from the
experiment cannot be used. On the one hand the experiment is still under construction and there
has no data been produced yet. On the other hand this thesis concentrates on the reconstruction
techniques, not on the reconstruction of real data.
For checking whether or not a certain technique is in general suitable for a task, one approach
is to start of with smaller but similar tasks and con�gure the problem in the progress till the
whole task is handled. This approach is used in this thesis, which makes it necessary to simulate
the data and brings the bene�t of being able to con�gure the complexity of the model with
every step. In this work the Monte Carlo Method is used to simulate the data. The Monte Carlo
method relies on the rule of large numbers and uses random sampling to obtain numerical
results. A special form of the Monte Carlo Method is used, a Toy Monte Carlo Simulation. This
method is used to simulate data without the requirement to fully simulate the real process.
Only the main features for the particular problem are simulated, while other e�ects can be
neglected. This method is in particular useful for testing applications or methods.

5.1 Simulation

For training a neural network the data needs to include the key features of the events, for
example coordinates de�ning a muon track, which the network should learn to reconstruct.
Additionally, the signals which the events caused in the detector, i.e. the photon counts taken
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by the PMTs of a LSD. Therefore, it is very important to keep the connection between the
signal and the features of every event. This makes it necessary to simulate the whole process,
rather than only the outcomes. In this work the goal is to reconstruct muon tracks in a liquid
scintillation detector with showers along the track. In these showers cosmogenics can be
produced, which mimic the detection signal of reactor neutrinos and are one of the biggest
background in experiments like JUNO. To reach this two di�erent reconstruction goals are set.
The �rst one is a reconstruction of coordinates describing a track and will be referred to as
coordinate reconstruction and the second one is to reconstruct the photon emission distribution
of tracks with voxels, referred to as voxel reconstruction.
The simulated muon path is straight and crosses the detector from one wall to another. The
scintillation light is measured by PMTs on the detectors skin. These give the signal data. The
full data set includes the input data, describing the detector response and the data for the two
reconstruction goals, describing the path.

5.1.1 Detector

The detector is, in contrast to the JUNO detector, cubic, not spherical. While the physical
processes are all the same regardless of the geometrical shape, a cubic detector serves all the
features needed for a test of the reconstruction technique. The simulated detector has an edge
length of 4m and will be considered as the interaction volume, where the events happen and
produce signals. The skin of the detector is covered with simulated PMTs, which cover 100%
of the detector’s skin. On each side of the cube 10 × 10 PMTs are simulated, this leads to a total
number of 600 PMTs. Every PMT is counting the photons per time, generating a histogram
for every event. The PMTs are simulated with a time resolution of 1 ns, which gives the width
of the bins in the histograms and covers with the time resolution of the PMTs used in JUNO.
For every event 50 ns are taken, starting with the muon entering the detector. This time frame
would allow a particle to travel ≈ 15m, under the assumption it travels with the speed of light.
The signal data for one event has the shape 600 × 50.

5.1.2 Path

The path always starts on the top of the detector at z = 2, with the origin of coordinates in the
center of the detector. The x- and y-coordinates of the start point are randomly distributed in
range of [−1.5, 1.5]. This limits the minimal path length is limited to 0.5m. The direction of the
path is normally distributed with the polar coordinates � ∈ [0, 2�] and � ∈ [�/2, �]. The path
ends when it reaches the next detector wall. At a random position along the path a peak is
simulated. At the peak 5000 photons are emitted. Start, peak and end position are the points,
which are used to describe the path for coordinate reconstruction label. Figure 5.1 displays the
distribution of start, peak and end positions in the detector. The right plot shows the start
positions of the paths, which are always located on the top skin with the given constraints. Peak
and end positions are displayed in the center and on the right. While the peaks are distributed
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Figure 5.1: Start, peak and end positions in the detector (left, center, right) per path in data
set 1.

in the detector volume, the end positions are located on the detectors skin, but not on the top
skin.

5.1.3 Photons

Along the path photons are emitted. All these photons are emitted with a random direction,
with the spherical coordinates � ∈ [0, 2�] and � ∈ [�/2, �]. The photons travel through the
detector with the speed of light, which is approximated with 3 ⋅ 108 m/s, till they reach a
detector wall. On the way the photons can be absorbed or scattered with a mean free path of
dabsorption = 80m for absorption and dscattering = 25m for scattering. These values orient on the
scintillation liquid used at JUNO. Due to the size of the detector both processes do not occur
often. The scintillation decay distribution and the time resolution of the PMTs are considered
with

f (s, t) =
s
2tc

⋅ exp(
1
tc (

t +
t2pmtr
2tc )) ⋅(1 + erf (−t −

t2pmtr
tc )

1√
2tpmtr)

(5.1)

from [44]. With t as the time, tc the mean decay time of the scintillation material considered to
be 0.2 ns, s the signal strength and tpmtr the PMT resolution of 1 ns .
Along the path every 0.001m 10 photons are emitted, giving a pseudo-continuous photon
emission. On a random point along the path a peak is simulated where 5000 photons are
emitted. All photons are simulated till they reach a detector wall. There they are mapped on the
PMTs forming the PMT signals. The detector volume is split into 20x20x20 voxels leading to a
total number of 8000 voxels with an edge length of 0.2m. The emission points of all photons
are mapped onto the voxel structure, to obtain the voxel reconstruction label. In �gure 5.2 a
simulated path is displayed, with the emitted photons mapped onto the detector walls in green
and the path in red. Additionally, the PMT histogram of one PMT, which is sketched into the
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Figure 5.2: Simulated event in the detector, in green the photons are marked on the detector
walls, the path is marked in red. In purple one PMT is sketched in the detector, with the related
histogram. The histograms of all 600 PMTs form the input data used for the reconstruction.

detector, is displayed. In this simulation several processes are not considered:

• Cerenkov light,

• di�erent path types like curved, stopped or with several peaks,

• re�ection,

• attenuation, in this work only absorption is considered without reemission.

These processes do not have a big impact for analyzing the reconstruction qualities. They could
be added in a later iteration of this work.

5.2 Generated Data

For training four data sets have been simulated, with 1000 events each. These are named from 1
to 4. Set 1 and 2 are mainly used, 3 and 4 are back-up sets, for cases more data is needed. Set 1 is
used to train the networks and set 2 to validate the training. In �gure 5.3 and 5.4 data sets 1 to 4
are plotted in regards of the photon number, path length and amount of �lled voxels per event.
In �gure 5.3 the distribution of �lled voxels in the sets 1 to 4 is displayed. The total number
of voxels in the detector is set to 8000, with a fraction of 3 to 50 being �lled. The �lled voxels
de�ne the simulated muon path and are de�ned as voxels in which photons where emitted.
The number of photons per event in data sets 1 to 4 sums up to about 10000 to 60000 photons,
all data sets follow the same distribution in �gure 5.4b. The path length and the amount of
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Figure 5.3: Simulated data sets 0 to 4 in comparison, with regards on �lled voxels per event.
The amount of �lled voxels ranges between 3 and a maximum of 50.

0 1 2 3 4 5 6
Path length [m]

0

10

20

30

40

50

60

70

C
ou

nt

Path length per event in data Sets 1 to 4
Set 1
Set 2
Set 3
Set 4

(a) path length per event

0 10 20 30 40 50 60 70
Kilo photons

0

10

20

30

40

50

60

70

C
ou

nt

Photons per event in data Sets 1 to 4
Set 1
Set 2
Set 3
Set 4

(b) number of kilo photons per event

Figure 5.4: Simulated data sets 0 to 4 in comparison with regards on the path length per
event 5.4a and the number of photons per event 5.4b. As the amount of photons is directly
proportional to the path length, both plots follow the same distribution.



44 CHAPTER 5. SIMULATION AND DATA

0 10 20 30 40 50
Detection time [ns]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
m

ea
n 

N
um

be
r 

of
 d

et
ec

te
d 

Ph
ot

on
s

Summed PMT response in data Sets 1 to 4
Set 1
Set 2
Set 3
Set 4

Figure 5.5: Mean PMT response for the simulated data sets 1 to 4 in comparison. All four data
sets follow the same distribution, with a peak at roughly 16 ns.

�lled voxels per event follow each the same distribution, as the amount of emitted photons
is directly proportional to the path length. Per millimeter 10 photons are emitted, with an
additional peak of 5000 photons at a random position along the track. The path lengths range
between around 0.5 and 5.7m, the distribution is displayed in �gure 5.4a.
In �gure 5.5 the mean PMT response is displayed. All four data sets follow the same distribution,
with a peak at approximately 16 ns. After the peak the distribution converges to 0, this indicates
that the measuring time of 50 ns is a valid choice.

5.3 Classic Data Analysis

The data sets are analyzed classically. A simple analysis method is used to create a minimal
reconstruction goal. Both reconstruction goals are classically reconstructed.

5.3.1 Simple Coordinate Reconstruction

To �nd the coordinates of start, peak and end of the path the input data and the coordinates of
the PMTs are used. The start point can be found easily by taking the �rst hit in the PMTs. This
only works for this simulation, as it starts with the muon entering the detector.
The end of the path is not necessarily the last hit in the detector. As the path ends by intersecting
with one of the detector walls, the PMT which holds the end point is searched. The end of
the path is indicated by an increase of photons in this PMT with a sudden decline when the
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Figure 5.6: Distances of the reconstructed points start, peak and end to the true coordinate in
set 1. The mean distances are (0.15 ± 0.07)m for the start, (0.58 ± 0.68)m for the end and for
the peak (1.13 ± 0.92)m points.

muon leaves the detector. Therefore, the end point in this reconstruction is de�ned as the PMT
coordinate of the PMT holding the steepest decline in the photon distribution between two
neighboring bins. Lastly, the peak point needs to be reconstructed. As the path is simulated
to be straight, with the peak along the path, the reconstructed coordinates need to follow the
same characteristics. Therefore, the peak coordinate for this simple reconstruction is de�ned
to be on the point on the path between start and end point, closest to the highest peak detected
in the PMTs.
The reconstruction quality of these coordinates can be described by the mean distance between

true and reconstructed points. The distribution of these mean distances of the characteristic
points in data set 1 is displayed in �gure 5.6. The start point is reconstructed with a mean
distance of (0.15±0.07)m. This distance is very good as the dimensions of the PMTs is 0.4x0.4m.
As the start coordinate is de�ned by the coordinates of the PMTs, de�ning their position by the
center of the PMTs, a better reconstruction will probably not be archived with other methods.
This method works here especially well, as the simulation starts with the muon entering the
detector with no other sources of light. For real or more realistic data this approach would
not work, as the time measurement would not necessarily start with the muon entering the
detector.
The end points are reconstructed with a distance of (0.58 ± 0.68)m. Even though a simple
method was used, in over 50 % of the analyzed events the distance is ≤ 0.4m.
The peak points are reconstructed with a distance of (1.13 ± 0.92)m. The used reconstruction
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Figure 5.7: Plot 5.7a displays the ROC curve of the classic reconstruction of the photon distri-
bution with voxels. In �gure 5.9 the fraction of correctly �lled and correctly predicted emplty
voxels.

method uses the measurements from the skin of the detector to �nd a point inside its volume,
by using the already reconstructed points and the knowledge of the simulation properties.
The disadvantage of this method is that errors in the end and start coordinates add up in
the reconstructed peak coordinate. This makes the peak coordinate the worst reconstructed
coordinate in this analysis.

5.3.2 Simple Voxel Reconstruction

To reconstruct the photon distribution with voxels, the characteristic points from the coordinate
reconstruction are used. All voxels along the line between start and end coordinate are �lled
with a fraction of the photon sum. The voxel containing the peak coordinate is �lled with 5000
extra photons, which are subtracted from the total photon sum.
To evaluate this simple method the fraction of correctly classi�ed as empty and full voxels,
the mean number of photons in full and empty voxels and the mean distance between true
and reconstructed peak and the area under the ROC curve (AUC) are used as characteristics.
The AUC and the fractions of voxels correctly classi�ed, display the separation strength of the
reconstruction. The distance between the true and reconstructed peak and the mean photon
sum in �lled and empty voxels show, how the photons are distributed in the reconstruction.
In �gure 5.7 the ROC curve and the fractions of correctly classi�ed voxel types are displayed.

The ROC curve has an AUC of 0.605, with only entries on the upper left corner. This behavior
is as expected. As the predictions with this simple classic method do not vary much. Most of
the voxels are here reconstructed to be zero, the next bigger values expected with this recon-
struction method are already relatively big fractions of the photon sum in the reconstructed
path voxels. Therefore, no cut can archive a fraction of correctly classi�ed path voxels higher
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Figure 5.8: Photons in empty and �lled voxels are displayed in the upper and the lower plot. In
both plots the green distributions show the photons in the �lled and empty voxels as simulated.
The purple distributions show how many photons have been reconstructed in these voxels
with this reconstruction method. Both plots share the same x axis, the ticks are labeled in the
lower plot.

than 0.25 but smaller than 1.
For �gure 5.9 the cut to distinguish between empty and full voxels is set to 1 photon, with less
than that de�ned as empty. The fraction of correctly classi�ed empty voxels is very high with
(99.9 ± 0.13) %, still only (21.12 ± 15.75) % of the �lled voxels are reconstructed correctly. Even
though the empty voxels are mostly correctly classi�ed, the separation between the two classes
of voxels, empty and �lled, is not very successful with this method.
In �gure 5.8 the amount of reconstructed photons per voxel class are compared with the simu-
lated photon distribution. The mean amount of photons in empty voxels is (2.4±108.2) photons.
In the �lled voxels a mean photon sum of (638.6±1942.3) photons is reconstructed, which is only
a 40 % of the true mean photon sum for �lled voxels, which is (1586.3 ± 1431.4) photons. Even
tough the reconstructed mean photon sum of the �lled voxels is too small, the highest entries
of the distribution are much too high. The reconstructed distribution has its maximal values
at around 25000 photons in one voxel, for both voxel classes. In the simulation the maximal
photon sum for �lled voxels is only around 8000 photons, while the simulated photon sum in
empty voxels is 0. The mean distance between true and reconstructed peak is displayed in
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Figure 5.9: The mean distances between true and reconstructed peak position.

�gure 5.9, with a mean value of (0.96±0.87)m. As the peak position is used from the coordinate
reconstruction a similar resolution is expected. Still the voxel reconstruction archives an around
0.17m smaller distance. This is due to the segmentation of the detector volume in voxels, the
peak position is now de�ned as the position of the voxel with the highest photon sum. Due
to the reconstruction method the empty voxels are mostly correctly classi�ed. Additionally,
the knowledge of the path characteristics, allows this reconstruction method to reconstruct a
path with the same characteristics. Still the reconstruction is not very good, as only around
20 % of the �lled voxels are correctly identi�ed. As the used method uses the results from the
coordinate reconstruction, the precision is in a similar range.

The simple coordinate and the simple voxel reconstruction are used to set a minimal goal for the
reconstruction method which is developed in this work. With more e�ort and more elaborate
techniques also classic methods can reach much higher precision in path reconstruction tasks.
In this work machine learning methods using the graph architecture are used. The simple
reconstruction methods show that the looked for information can be found in the input data.
Additionally, from the reconstruction it becomes visible how simple the data can be recon-
structed. For example, the start position can be reconstructed easily by taking the coordinates
of the PMT with the �rst hit. A neural network based reconstruction method is expected to
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�nd this connection and thereby predict the start points with a similar precision. The other
points and especially the photon emission distribution are expected to be reconstructed with
far more precision.
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Chapter 6

Coordinate Reconstruction

In this work two di�erent reconstruction methods are implemented. Firstly, the coordinate
reconstruction and secondly the voxel reconstruction. For the coordinate reconstruction, the
muon track is characterized by characteristic points along the track. The voxel reconstruction
is covered in the next chapter.

6.1 Goal

The goal of the coordinate reconstruction is to reconstruct the coordinates of start, peak and end
points of the muon tracks. As input the simulated data is used, which is described in detail in
chapter 5. The data has the shape 600×50 representing the binned photon distribution measured
by 600 simulated PMTs. Each PMT takes 50 bins with a width of 1 ns. The reconstruction is
compared to the label, which was determined in the simulation, consisting of the coordinates
of start, peak and end point of the muon path inside the simulated detector. Along each muon
track a shower is simulated by a discrete release of photons. This is a peak in the photon
emission distribution, therefore the peaks represent showers along the track.
The coordinate reconstruction is used as a simpler method to describe the path, compared
to the photon emission distribution with voxels. Using a simpler reconstruction method in
the beginning brings the bene�t that reconstruction methods can be tested on whether or not
they are in general suitable for the given task. Methods which perform well here can later
on be used in more complex reconstruction approaches, as showed in chapter 7. Additionally,
reconstructing a muon track and a corresponding shower with the help of coordinates could
already be helpful in some experiments. For example in the JUNO experiment, a big background
source is correlated with showers along muon tracks. The proposed veto discriminates a
cylindrical volume around the muon track with a radius of r = 3m. It has an e�ciency of 83 %
on the reactor neutrino detection process. The reconstructed shower position in the detector
would give the opportunity to veto only parts of the detector, decreasing the dead time and
increasing the e�ciency on the IBD. More about JUNO and its backgrounds can be found in
chapter 3.3.
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6.2 Implementation

All used code for this thesis is written in Python3. For coding the network architectures
"PyTorch" [45] is used as backend. It o�ers tensor computation and the autograd system. This
is very helpful as it handles the backpropagation for neural networks. Additionally, many
concepts used with neural networks are included in this library, such as pooling methods,
activation and typical loss functions. To implement the graph neural network structures the
Deep Graph Library (DGL) [46] is used. Here DGL operates with PyTorch as backend, which
ensures simple transitions between neural network and graph network components. Both
PyTorch and DGL o�er the opportunity to compute on GPUs as well as CPUs. In this thesis all
code runs on CPUs.
The implementation of the developed architectures provided on Github.1 To train and validate
the network the data sets 1 and 2 are used. These have each 1000 events and are discussed in
detail in chapter 5.

6.2.1 Basic Idea

The goal of this reconstruction is to use the PMT measurements from the detectors skin as
input to obtain coordinates for characteristic points along the muon track inside the detector.
The input data has the shape 600 × 50 and has an underlying geometrical structur, which is not
directly visible in the data. To use the geometrical structure of the data a GNN or GCN could
be used. Graph Neural Networks have a great reputation in nowadays research. This method
delivered great results for Jet tagging with the ParticleNet [47].
The data structure provided by the simulation suits nicely for the graph structure, which uses
N dimensional point clouds as data. This structure is already provided by the detector setup,
which is simulated to obtain data. One PMT can be considered as one point with N dimensions,
these correspond to the bin entries in the PMT data. PMT features could be used as additional
dimensions. Additionally, all PMTs form a geometrical structure representing the detector
volume. The spatial relationship between the PMTs can also be implemented in the graph
structure. The here presented approach uses the PMTs as nodes. The edges connect the PMT
nodes. The idea is to connect spatially neighboring PMT nodes to provide the detector setup to
the network.
This method has the bene�t, that the data taken by a LSD can be directly used as input for
the network. Additionally, the geometrical structure of the detector is implemented implicitly,
which means this structure does not have to be learned by the network.

1https://github.com/rwrth/Coordinate_Reconstruction

https://github.com/rwrth/Coordinate_Reconstruction
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6.2.2 Optimization

To optimize the network form the basic idea to the �nal architecture, parameters are systemati-
cally changed and resulting architectures trained. To optimize the network’s hyperparameters
the prediction has to be evaluated. To compare di�erent predictions characteristic features
are de�ned, which describe the prediction quality. For this optimization these features are the
following:

• mean distance between reconstructed and label points for start, peak and end of the
track,

• percentage of reconstructed end points on any detector skin,

• percentage of reconstructed start points on the top detectors skin at z = 2,

• percentage of reconstructed peak points on the line between reconstructed start and end
point.

The mean distance between a reconstructed and the true point already tells how well the point
has been reconstructed. Additionally, characteristics of the points are used to further describe
the quality of the muon path reconstruction. The simulated path always starts on the top
detector skin at z = 2 and ends on the next detector wall the muon passes. On a random point
along the straight path a shower is simulated by a discrete photon emission. To check whether
these characteristics are reconstructed by the network the percentages of events ful�lling these
characteristics are monitored.
To optimize the the hyperparameters of the networks architecture, the hyperparameter of the
architecture are varied and the resulting predictions compared in regards of the optimization
features. The goal is to minimize the mean distances between reconstructed and true points
and to maximize the percentage of reconstructions which ful�ll the de�ned features.
For this optimization the following hyperparameters have been optimized:

• loss function,

• GCN method,

• pooling method,

• activation function,

• number of layers for graph convolution,

• number of layers for the fully connected network,

• number of features in graphs,

• layer width of the fully connected network,
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• dropout,

• learning rate.

6.3 Optimized Architecture

The �nal optimized architecture is schematically displayed in �gure 6.1. It consists of a GCN
part and a fully connected part. The GCN uses three layers of edge convolution, which is
described in detail in chapter 4. In these layers the features are stepwise increased from the
initial 50 to 600. The used graph has 600 nodes, which resemble the PMTs in the detector.
These are connected over edges. The method 8 nearest neighbors builds the graph connecting a
node to its eight nearest neighbors on the provided feature space. For this method the spatial
coordinates of the PMTs are used. Thereby the graph structure resembles the geometrical setup
of the detector.
After the Graph Net part of the network, the data needs to leave the graph structure. Therefore,
a pooling method is used, here it is Node Max Pooling. The pooling method needs to be invariant
under translations and is normally taken over the features of a graph. As in this setup the nodes
correspond to the PMTs, the pooling method is taken over all nodes. In the optimization this
method showed good results using the maximum function. Therefore, the used max pooling
method takes the maximal value of every node, which is a total of 600, corresponding to the
600 PMTs.
After pooling the data is processed by the fully connected network. This part has �ve layers,
decreasing the amount of features from 600 to 200 in the �rst layer and further to 9 in the last
one. These nine values correspond to the (x,y,z) coordinates of the three reconstructed points.
In this architecture tanh is used as an activation function for all layers beside the last one. In
the last layer clamp(-2,2) is used, which sets the allowed maximum and minimum to ± 2, which
are the dimensions of the detector. Additionally, a dropout is used, once in the �rst and once
in the second part. Both times the dropout is 0.2. With this method 20% of the features are
randomly set to zero. This method increases the regularization of the training and thereby
avoids over�tting.

6.3.1 Loss Function

The optimized loss function uses the distances between the reconstructed and the label points.
The main goal of the reconstruction is to minimize these distances. Additionally, the collinearity
of the three points is added to the loss function. To simplify the equation of the loss function
the prediction and label are used in coordinate representation. The reconstruction p consists of
the three points start, peak and end, labeled with s, p and e, p = [⃖⃖⃗ps , ⃖⃖⃗pp , ⃖⃖⃗pe]. t represents the
truth and is used with the same representation t = [ ⃖⃗ts , ⃖⃗tp , ⃖⃗te]. The loss function uses the sum of
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Figure 6.1: Optimized network architecture to reconstruct coordinates. The network consists
of a GCN part in green and a fully connected part in blue. The numbers in the boxes below the
title of the layers, display how the amount of features changes.

the distances between label and reconstructed points, divided by a factor � and squared.

L(p, t) = [
|(⃖⃖⃗ps − ⃖⃗ts)| + |(⃖⃖⃗pp − ⃖⃗tp)| + |(⃖⃖⃗pe − ⃖⃗te)|

� ]

2

+ |1 − coll|2. (6.1)

The collinearity coll is de�ned as

coll =
(⃖⃖⃗pp − ⃖⃖⃗ps) ⋅ (⃖⃖⃗pe − ⃖⃖⃗pp)
|(⃖⃖⃗pp − ⃖⃖⃗ps)| ⋅ |(⃖⃖⃗pe − ⃖⃖⃗pp)|

. (6.2)

It is supposed to adjust the three reconstructed points to be on one straight line. The angle �
between two vectors ⃖⃗a and ⃖⃗b is de�ned as cos(�) = a⃗⋅⃗b

|⃗a|⋅|⃗b|
. For the case all three points are on

one line or the two vectors ⃖⃗a and ⃖⃗b are collinear, cos(�) = coll = 1 and the last summand in the
loss function vanishes.
In the optimization � was optimized to 0.1.

6.4 Results

To obtain the results, the optimized architecture is trained and evaluated. The results are
described with the same characteristics used for the optimization. For the results the validation
data set has been used, as it is unknown to the network.
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Figure 6.2: Histogram of distances between label and reconstruction for start, peak and end
points. The mean distance for the start points is dS = (0.16 ± 0.20)m, for the peak dP =
(0.22 ± 0.14)m and for the end points dE = (0.21 ± 0.11)m.

The most relevant criteria are the mean distances between label and reconstructed points. In
�gure 6.2 these distances are plotted in a histogram. The mean distance for the start coordinates
is dS = (0.16±0.20)m, for the peak dP = (0.22±0.14)m and for the end points dE = (0.21±0.11)m.
Over 85 % of the reconstructed peak points in the evaluated data set 2 are reconstructed with a
distance ≤ 0.4m.
The percentages of ful�lled characteristics are analyzed as well. 99.8 % of the predicted start

coordinates are on the top detector skin, at z = 2. 94.5 % of the reconstructed end points are on
any detector skin. And in 16.7 % of the observed events all three points are reconstructed to be
on one line.
The distances between reconstructed and label points is around 0.2m for all three points. The
used PMTs have the dimensions 0.4 × 0.4m2. As the emitted photons are detected by the PMTs,
the hit position of a photon on a PMT can only be determined up to an uncertainty of

√
2(d/2)2,

with d as the edge length of the PMT.
The start point is reconstructed with a mean distance of dS = (0.16 ± 0.20)m and is thereby the
best reconstructed point in this reconstruction. In comparison to the simple classic method
with a mean distance for the start point of (0.15 ± 0.07)m, this reconstruction performs in a
similar range for the mean value, but the distribution is less spread for the classic method. The
start point is the simplest to reconstruct from the given data, as the �rst hit is always in the
PMT covering the start point.
The end and the peak points are reconstructed with this method more precisely, compared to the



6.4. RESULTS 57

simple method. The peak points are reconstructed with a mean distance of dP = (0.22 ± 0.14)m.
Over 85 % of the peak points in data set 2 are reconstructed with a distance ≤ 0.4m. For these
events the volume, which holds the peak, can be narrowed to 0.27m3. Thereby 85 % of the peak
points can be narrowed to less than 0.4 % of the 64m3 detector volume.
A reconstruction method to �nd showers along muon tracks in LSD seems to be promising.
Such an application could be used to �nd muon induced showers in a LSD to discriminate
cosmogenics. With a lot of further research and improvement an identi�cation method �nding
muon induced showers, could be developed from this work.
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Chapter 7

Voxel Reconstruction

7.1 Goal

In this chapter the photon emission distribution is reconstructed from the input. The simulated
data described in chapter 5 is used. The input is the PMT response from the 600 simulated PMTs
with each 50 bins and a bin width of 1 ns. The photon emission distribution is represented
by voxels. The detector volume is segmented in 20 × 20 × 20 voxels with the dimensions
0.2 × 0.2 × 0.2m. For each voxel the sum of photons emitted in the voxels volume is supposed
to be reconstructed. Besides from reconstructing characteristic points along the muon track,
as showed in chapter 6, the here presented method gives detailed information on the photon
emission distribution in the detector. For each voxel the number of photons inside its volume
are supposed to be reconstructed. This leads to two types of voxels, �lled and empty ones. The
�lled voxel de�ne the track of the muon and the voxel with the highest amount of photons is
the one holding the shower, which is simulated by a peak in the photon emission.
The voxels in truth data can be part of the path, referred to as path voxel, or not, referred to
as background. Additionally, voxels of the reconstruction can be reconstructed as �lled with
photons or as empty. The reconstruction is supposed to produce semi-positive numbers for
every voxel, which represents the amount oh photons emitted in the voxel. A threshold needs
to be set to de�ne the two classes �lled and empty in the reconstruction. A natural choice
would be a threshold at one photon, which assigns voxels with a reconstruction of at least one
photon to the class �lled. Filled voxels in the reconstruction can either be correctly identi�ed
path voxels or falsely classi�ed background voxels. The empty voxels in the reconstruction
can be correctly or falsely identi�ed, respectively. In this chapter the two voxel classes in the
label and the four voxel types in the reconstruction are discussed by using the introduced
nomenclature.
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Voxel	Nodes

PMT	
Nodes

Basic	Idea	of	the	Graph	Architecture
 

Figure 7.1: Basic idea of the architecture, showing a part of the graph. The voxel nodes are
displayed in yellow and the PMT nodes in blue. The edges are visualized with arrows. The
PMT voxels use the bin entries of the PMT histograms as features.

7.2 Implementation

For the implementation of this network the same libraries as in chapter 6 are used. "PyTorch"
[45] is used as backend and DGL [46], the geometric loss library (geomLoss) [42] is used
to determine geometric loss terms. The implementation of the developed and optimized
architecture provided on Github1.

7.2.1 Basic Idea

The used graph setup for the coordinate reconstruction already performed well by predicting
three characteristic points along the track with a mean distance of ≈ 0.2m to the label points.
A similar architecture is used for the voxel reconstruction. In the coordinate reconstruction
the graph consists of 600 nodes. These nodes represent the 600 PMTs. As input features the
50 entries from the histograms taken by the PMTs are used. These nodes are connected over
edges to their eight spatially closest neighbors. In the coordinate reconstruction the data leaves
the graph representation and is further processed in a fully connected network to create the
output consisting of three points.
The geometrical structure of the detector should also be used in the voxel reconstruction. The

basic idea is that the photons, detected in the PMTs, propagate backwards through the given
structure to their origin. This progress is supposed to invert the physical progress of photon
emission and propagation, which takes place in the detector when a muon passes through.
To implement this idea a graph is used which is supposed to represent the structure of the

1https://github.com/rwrth/Voxel_Reconstruction

https://github.com/rwrth/Voxel_Reconstruction
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detector. It is made out of 8600 nodes representing the 600 PMTs and the 8000 voxels. The PMT
and voxel nodes are connected over edges to their nearest spatial neighbors. The input data is
used as features of the PMT nodes. It is supposed to be propagated over connected nodes and
edges in the detector volume, which is represented by the voxel nodes. The output needs to
have 8000 entries representing the photons emitted in the 20 × 20 × 20 voxels.
In �gure 7.1 a part of this graph is schematically displayed. Three PMT and eight voxel nodes
are displayed in blue and yellow. The PMT nodes use the histograms taken by the PMTs as
features. As displayed in the �gure the PMTs are connected over edges to the spatially closest
voxels. Neighboring voxels are connected over edges with each other. The updated node
features are determined by using the features of all over edges connected nodes. Therefore, the
features can only propagate to their direct neighbors in one layer. This means for propagating
data through ten voxels, ten layers are needed to reach the core of the detector. The optimized
graph is discussed in detail in section 7.3.1.

7.2.2 Optimization

To develop a well performing network from scratch a start architecture is optimized with regards
to the predictions. During the optimization the hyperparameters of the architecture are varied
systematically. The resulting architectures are trained and evaluated on the same data set. The
reconstructions from di�erent approaches are compared with regards to characteristic features,
which describe the quality of the predictions. The here used features are on the one hand
describing the classi�cation performance of the network and on the other the regression quality.
The classi�cation performance describes how well two or more classes can be distinguished
in the reconstruction. The two classes in this reconstruction are path and background voxels.
The path voxels are �lled with photons in the label and represent the muon track, while the
background voxels are empty. In the reconstruction the path voxels are supposed to be �lled and
the background voxels are supposed to be reconstructed as empty. But this is not necessarily
the case. In the reconstruction every voxel is represented by a �oat ≥ 0. A natural choice to
distinguish between path and background voxels would be a threshold at one photon. Voxels
predicted with less than one photon would be empty, and voxels �lled with at least one photon
�lled. But this choice is not always the best, for example when all voxels are systematically
�lled with too many or too little photons. Therefore, a cut needs to be set, which distinguished
between the two classes in the reconstruction.
A cut independent method to describe the classi�cation quality is the area under the curve (AUC)
using the ROC curve. This is explained in detail in chapter 4. AUC is the �rst characteristic
feature. The second one is the percentage of voxels correctly classi�ed as empty with the
threshold de�ned to correctly classify all path voxels as �lled in the used data set. As the
number of path voxel is only ≤ 1 % of the total voxel sum, they are crucial to identify, because
they describe the searched muon path. This feature displays the classi�cation quality with
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regards on the path voxels. Additionally, it reveals whether all path voxels can be correctly
classi�ed with a suitable cut and how well the background voxels are classi�ed in this case. The
feature is called perfect cut (pc). In a perfect reconstruction this value would reach up to 100 %.
This feature is very strict, as it becomes zero, if one path voxel is reconstructed distinguishable
from background. Still it is very helpful as it identi�es setups in which all path voxel can be
identi�ed as such and additionally tells how well the background voxels are reconstructed.
The photon sums in the voxels need to be compared as well, to observe the photon distribution
quality. For optimization the mean amount of photons in path and background voxels are
monitored. Lastly, the peak reconstruction qualities are monitored. The peak along the muon
track represents a shower. The peak reconstruction quality is measured by the mean distance
between the label peak and the reconstructed peak. In the reconstruction the peak is de�ned
as the voxel with the highest photon sum. To additionally control the amount of photons
reconstructed in the peak voxel, the mean di�erence between the photons in the label peak
and the reconstructed peak is used as an optimization feature.
To optimize the architecture the following hyperparameters have been optimized with regards
of the optimization features:

• loss function,

• graph,

• layer types,

• amount of layers,

• amount of features per layer,

• drop out,

• learning rate.

As the loss function describes how the output needs to be changed to �t the label and the graph
describes how the data propagates, these are considered as especially relevant to improve the
prediction. The loss function and the graph have been optimized in several steps, these are
listed in the following subsections.

7.2.3 Loss Function

In �gure 7.2 an optimization plot is shown. This plot compares di�erent loss functions, which
are labeled by abbreviations. The loss functions Cross Entropy Loss (CE), Mean Squared
Error Loss (MSE), L1 Loss, Negative Log Likelihood (NLL), geometric loss function without
3D gradients (GeomA) and geometric loss function with 3D gradients (GeomB) are used. The
MSE, CE and geometric loss functions are already introduced in chapter 4. The 3D gradients
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Figure 7.2: Optimization plots compares di�erent loss functions in regard of the optimization
parameters. The loss functions CE, MSE, L1 Loss, NLL, GeomA and GeomB are plotted. The
di�erent optimization features are discussed in section 7.2.2.

are discussed in the next section and L1 and NLL are not used furthermore and therefore not
introduced. The �gure shows the optimization features, already discussed.
For AUC2 it sticks out, that the two geometric loss approaches perform far best. GeomB
performs even better in classi�cation than GeomA, which shows that the 3D gradients perform
well in the geometric loss function. Both geometric loss functions reach up to 80 % correctly
classi�ed as empty for pc. The plots on the right hand side display the photon distribution
qualities of the di�erent loss functions. MSE performs best here, as the mean peak distance is
minimal and the mean photon sum in �lled voxels is maximal, in comparison to the results of
the other loss functions. But all loss functions deliver far to small values for the mean photon
sum in path voxels, as well as in the peak. This is displayed in the plot underneath. As no loss
function performs well on all features, a more advanced loss function is needed. From this
optimization GeomB is set as the basis for the loss function. It is combined with other loss

2For this work no errorbars for the AUC values are given, because here the AUC is only used to compare
similar architectures on the same data set, with the same cuts. In the direct comparison only the AUC is considered
the corresponding errors are neglected. For further ROC curves important for this works the errorbars on the
di�erent cuts are displayed.
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terms to improve the prediction.
In the next step di�erent combinations of loss terms have been tested to identify combinations
which perform best. CE turned out to perform well in combination with GeomB. Additionally,
MSE loss terms were included to improve the photon sum predicted in �lled voxels. The
optimization considered all loss terms and their speci�c adjustments, their weight and the data
on which they work. The optimized characteristics are:

• single loss functions,

• loss term combinations,

• GeomB point cloud,

• GeomB 3D gradients,

• weight on 3D gradients,

• di�erent approaches for weights on the points in the point cloud,

• data on which GeomB loss is used,

• CE loss weights of the two classed path and background voxels,

• CE loss cut, to distinguish between the two classes,

• data on which CE is used,

• amount of MSE terms and their purposes,

• data on which MSE terms are used,

• weights on all loss terms.

After optimization the loss function was set to a combination of �ve loss terms. These are
GeomB, CE and three di�erent MSE terms. The optimized loss terms are described in detail
in subsection 7.3.2, where the optimized model is shown. All de�nitions which seem to be
missing here and raise open questions are given there.

7.2.4 Graph

For a graph network the architecture of the graph is crucial, as it describes how the data
propagates inside the graph. In this work, the graph is supposed to represent the geometry
of the detector. Therefore, two types of components need to be implemented, the PMTs and
the voxels. The input data is supposed to propagate from the PMTs into the detector volume,
represented by voxels. To optimize the graph di�erent approaches have been tested on how
the edges are de�ned in the graph, di�erent amounts of neighbors for the voxel nodes, the
edges between PMT nodes and voxel nodes, edges between the PMTs and the initialization of
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Figure 7.3: The optimized architecture is displayed schematically. The architecture is split in
two parts, both using di�erent graphs. First the Full Graph and afterwards the Voxel Graph is
used. All layers are edge convolution layers, the used amount of features are denoted in the
�gure.

the voxel nodes have been considered as well. The optimized graph is described in detail in
subsection 7.3.1.
For this architecture, the optimization showed that a second graph, without PMT nodes, after
some layers of training improves the performance. This second graph only consists of voxel
nodes and has also been optimized.

7.3 Architecture

In this section the optimized model is described, it is schematically displayed in �gure 7.3. This
architecture uses two di�erent graphs. Firstly, the Full Graph and afterwards the Voxel Graph.
The Full Graph has 600 PMT nodes and 8000 voxel nodes. The Voxel Graph only uses the voxel
nodes. Which graph is used for which layer is illustrated by colored frames in �gure 7.3. To
transform the features from one graph into the other, the 600 PMT nodes in the graph and the
600 × 54 corresponding features are cut o�. All layers are edge convolution layers, which are
described in detail in chapter 4. The input data has 54 features3, these are kept for the �rst
layers B1 to B8. Afterwards, the PMT nodes are cut o�. In the layers denoted with A, which
stands for "after the cut", only the voxel nodes are considered. The features are decreased in
layer A5 to 25 and in layer A15 to one. The output features of layer A15 are directly used as
output. Additionally, drop out with rate 0.5 is used on the output features of layer B8, A3, A6
and A9.

3The input features are the 50 bin entries taken by the PMTs, the spatial coordinates of the corresponding
PMT in the detector and a factor distinguishing between voxel and PMT nodes.
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7.3.1 Optimized Graph

The basic idea of the graph is that the data taken by the PMT propagates backwards in the
detector volume. The optimized graph consists of two types of nodes representing the PMTs
and the voxels. The graph is supposed to represent the geometrical features of the detector. The
600 PMT nodes are connected over edges to the 8000 voxel nodes. Each PMT node is connected
over edges to all voxel nodes within a radius of 1m. In this way the PMT nodes are connected
over edges to voxel nodes, which are up to 5 voxels deep inside the volume. Thereby, the data
from the PMTs can propagate up to the 5th layer of voxels after one layer of training. The
voxel nodes are connected over edges to their neighbors. Each central node has 26 neighbors.
The nodes on the edge of the detector have less neighbors.
The features used in this architecture are the entries of the bins taken by the PMTs for every
event. The detector has 600 PMTs, each measures for 50 ns with the resolution of 1 ns. The
input has thereby the shape 600 × 50. Additionally, the coordinates of the PMTs are used.
To distinguish between PMT and voxel node, the last features displays the object the node
represents. Here, 1 represents PMT nodes and 0 voxel nodes. In total the number of input
features is thereby 54. The voxel node features are supposed to �ll with photons during training.
Therefore, the �rst 50 features are initialized to be 0. The feature 51 to 53 are the x,y,z coordinate
of the corresponding voxels and the 54th feature is 0, to represent the voxel character of the
node.

7.3.2 Loss Function

The used loss function is a sum of �ve loss terms all serving a di�erent purpose. The di�erent
loss terms and their weights have been optimized.

Geometrical Loss

The geometric loss function relies on the implementation in the geometric loss library [42],
which is already described in chapter 4. This implementation does not work with the data
structure of 20 × 20 × 20, which is used for the label in this work. For this loss term the
data has been rearranged into a four dimensional point cloud. The four dimensions are the
x,y,z coordinate of the voxel position and the corresponding amount of photons. To keep the
computational e�ort low, not all 8000 voxel are transformed into points of the point cloud.
Only voxels with a photon sum higher than a threshold are considered in this loss term. This
threshold is optimized to 100 photons, which resembles a path length of 1 cm. This has the
downside that voxels which are �lled with less than 100 photons are not considered by this
loss term, but it has the bene�t that the computational e�ort decreases. This loss function has
a high computational cost, as the optimal transport needs to be calculated. The here missed
�lled voxels are considered by other loss terms.
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To calculate the loss, the points in the point clouds are weighted with the amount of photons in
the resembling voxels. The returned gradients have the same shape as the input. The gradients
on the reconstructed photons, can directly be applied. The gradients on the three spatial
coordinates of the point cloud cannot be used directly. Therefore, the gradients need to be
rearranged to operate on the 20 × 20 × 20 output. The gradients for x,y,z coordinate display
how the photons should be moved in space to �t the label distribution. These gradients are
a key feature of geometric loss functions and thereby need to be implemented. To transform
them into the output shape, the gradient is applied on the neighboring voxels in positive or
negative x,y and z direction of the considered voxel. The direction correlates with the sign of
the gradient. A negative gradient on the x coordinate of a point in the point cloud results in a
gradient on the in negative x direction neighboring voxel. Thereby, the network retains the
ability to rearrange the distribution, which is provided by a geometric loss function.

Cross Entropy Loss

The Cross Entropy Loss is de�ned as

CE(y, c) =
1

∑c wc
⋅∑
c
wc(−y[c] + log(∑

j
exp(y[j]))), (7.1)

y resembles the output and c the classes of a data set. To use CE for the given output a cut needs
to be set to distinguish between the two classes of voxels. The cut was optimized to be one
photon. This is a very conservative threshold, which helps to minimize the number of photons
reconstructed in background voxels. As this term only acts on classi�cation, input in range
[0, 1] is used. Therefore, the output of the network is for this loss function limited to one. The
two classes background and path voxels are weighted with the optimized factors wc = [0.001, 1].
This factor is used for unbalanced data sets, which is the case for this reconstruction. The ratio
of path to background is similar with a mean of ≈ 20/7980 ≈ 0.0025/1.

Mean Squared Error Loss

The MSE function is de�ned as

MSE(y, t) =
N
∑
i

(yi − ti)2

N
. (7.2)

The prediction and label are denoted as y and t in a sample of N events.
In this model three MSE loss terms are used. All these terms have a di�ered purpose. As
displayed in �gure 7.2 MSE performs well on predicting the photon sums per voxel. This also
showed during further optimizations.
MSE is used on path, background and peak voxels separately. The MSE terms path and back-
ground are supposed to improve the predicted amount of photons in the two voxel classes. The
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bene�t of separating the two loss functions is that they can be weighted di�erently. If only
one MSE term is used on both voxel classes, the loss function tends to decrease the predicted
amount of photons in all voxels, as the label is highly unbalanced. This leads in many cases to
an all zero prediction. The third MSE loss term is supposed to improve the predictions on the
peak position and its photon sum. To do so only path voxels with more than 2000 photons in
the label are considered. This cut has been optimized as well.

Total Loss Function

The total loss function is the weighted sum of all described loss terms

Loss = a Geom + b CE + c MSEpath + d MSEbackground + e MSEpeak. (7.3)

All loss terms are weighted and the weights are optimized. The magnitude of the di�erent
loss terms di�er a lot, as the geometric loss is in the order of 108, while CE in the order of
1. Therefore, the weights on the CE and MSE terms are correspondingly big. The optimized
weights are a = 0.625, b = 1.1 ⋅ 108, c = 104, d = 2.5 ⋅ 104 and e = 103.

7.4 Results

After discussing the model, the results produced by that model are discussed in this section. To
train the network the data sets 1 and 3 have been used, with a total number of 2000 events. For
validation the data set 2 with a total number of 1000 events has been used. The displayed results
have all been produced on the validation data set. In this implementation the network does
not learn from the validation data set, thereby the data set 2 can be considered as unknown.
First the results on the optimization features are shown, afterwards additional analyses are
displayed.
The plot in �gure 7.4 shows the ROC curve for the reconstruction. The ROC curve method is
described in chapter 4. The AUC displays the separation quality of two classes reached with the
considered reconstruction method and is independent of cuts. The better the separation quality
the more the curve moves in the upper right corner of the plot, to the coordinate x = y = 1. If
the curve is at x = y = 1, a cut for the di�erentiation between the two classes exists, where all
events for both classes are correctly classi�ed. The classi�cation strength of the here observed
reconstruction is AUC= 0.9904.
The ROC curve is from x = 0 to around 0.8 approximately 1, which means in this interval all
background voxels are classi�ed correctly. And from y = 0 to around 0.9 close to 1 on the x
axis, this means here around100 % of the path voxels are classi�ed correctly. Along the ROC
curve a cut can be chosen to obtain the preferred combination of correctly classi�ed voxels of
both classes.
Figure 7.5 shows the photon distributions of the two voxel classes. The upper plot shows the
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Figure 7.4: ROC curve of the optimized model to reconstruct the photon emission distribution
with voxels. The AUC is 0.9904. The plot shows the ratio of correctly identi�ed background
voxles with regards to the rate of correctly identi�ed path voxels, on the x axis. The ROC curve
in blue is de�ned by the orange points, which are generated with di�erent cuts. The ROC curve
method is described in chapter 4.

distributions for the background and the lower for the path voxels. The distributions de�ned
by the label and the reconstructed distributions are displayed in green and purple. In the upper
plot the voxels should all be empty by de�nition. The mean amount of photons reconstructed
in the background voxels is (59.5 ± 193.0) photons. The label photon distribution of the path
voxels has a mean value of (1587.0 ± 1426.3) photons. The distribution has a second burst above
5000 photons. The voxels de�ning these burst are the peak voxels, where 5000 photons are
emitted. The maximal path length inside one voxel is

√
3 ⋅ 0.22 ≈ 0.35m, for the edge length

of a voxel of 0.2m. This de�nes the maximal photon emission of a voxel without peak to
≈ 3500 photons. The gap between the two peaks of the distribution is between ≈ 3000 and
≈ 5000 photons. The reconstructed photon emission distribution does not follow the label
distribution, but has its mean value at (1519.7 ± 634.0) photons. The maximal value in the
reconstructed photon emission distribution is at around 5000 photons, while the maximal value
of the label occurs at around 8000 photons. The plot shows that the second burst, de�ned by
the peak voxels, is not matched by the reconstructed distribution.
The pc value for this reconstruction is 0 %. This means a cut set to identify 100 % of the path
voxels correctly leads to 0 % correctly identi�ed background voxels. Or in other words one or
more path voxel in the data set are reconstructed to contain the minimal amount of photons
and can thereby not be distinguished from the background voxels.
The mean peak distance is displayed in �gure 7.6. It shows the distances between label and
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Figure 7.5: In this plot the photon distributions for the two classes of voxels are displayed. The
upper plot shows the photon distribution of the background voxels as de�ned in the label in
green and the reconstruction in purple. The lower plot shows the photon distribution of the
path voxels with the same color code. Both plots share the same x axis, labeled in the lower
plot.
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Figure 7.6: The histogram displays the distances between label peak and reconstructed peak
on data Set 1. The reconstructed peak is de�ned as the voxel with the highest number of
reconstructed photons. The distance is measured in meters. The mean distance is (0.36±0.47)m.
Every bin has the width of 0.15 m.
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Figure 7.7: Di�erence between reconstructed photons and label on the path voxels. The
intensity of the color reveals the amount of photons reconstructed in this voxel, a high intensity
resembles a high number of photons.

reconstructed peak in meters. The peak coordinate is de�ned as the coordinate of the voxel,
which holds the peak. For the reconstruction the peak is de�ned as the voxel for which the
number of reconstructed photons is highest. Thereby, the coordinates of the peaks are discrete
and their distances are discrete as well. In this reconstruction the mean distance is (0.36±0.47)m.
19.5 % of the peak distances is 0m, which means the peak is reconstructed correctly. For 74.6 %
of the analyzed events the distance is below 0.35m, these peaks are reconstructed correctly or
in a neighboring voxel. In this case neighboring voxels are the 26 closest voxels, which directly
surround the considered one. The bin width in the histogram is 0.15m and the maximal bin is
the second one, representing distances between 0.15 and 0.3m. Voxels with a corresponding
distance are the 6 neighbors, which share a wall with the considered voxel. In 13.7 % the peaks
are reconstructed with a distance > 0.5m and in 5.2% the distance is > 1m.
In �gure 7.7 the photon di�erence between reconstruction and label on the path voxels is
displayed. The distribution is a superposition of two Gaussian distributions. One has a large
peak at around zero photons and the second one has a small peak at around ≈ 5000 photons.
The smaller distribution belongs to peak voxels, these are systematically underrated. This can
additionally be seen in �gure 7.5. The mean of the full distribution is at (66.8 ± 1345.8) photons.
The distribution could have been �tted and the reconstructed photons adjusted, so that the mean
photon di�erence of the large Gaussian distribution becomes zero. But as the distribution seems
to be only slightly of center but comparatively wide, it is abstained from this step. The mean
photon di�erence in the peak voxel is displayed in �gure 7.8. The mean di�erence between
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Figure 7.8: This histogram shows the di�erence in the number of photons in the peak voxel
between reconstruction and label.

the reconstructed photons in the peak voxels and the photon peak in the label is (3915.16 ±
912.19) photons. As already displayed in �gure 7.8, the amount of photons reconstructed as
peak is too small by a minimum of 500 photons. This de�cit is also visible in this plot.

7.4.1 De�ning the cut

To further analyze the data a cut is set to distinguish between path and background voxels
in the prediction. A natural choice is to set the cut to one photon. This would make every
voxel in which at least one photon was reconstructed a path voxel and the others background
voxels. But as visible in �gure 7.5 the mean amount of photons reconstructed in the background
voxels is around 60 photons. This means, the background voxels are in average �lled with too
many photons. A cut at one photon results in (99.68 ± 1.97) % correctly identi�ed as path and
(52.45 ± 10.39) % correctly identi�ed as background. As visible in the ROC curve, presented
in �gure 7.4, other cuts allow a higher percentage of correctly identi�ed background voxels,
without a big loss of voxels correctly identi�ed as path. To �nd a well performing cut the
ratios of correctly identi�ed as path and background voxels are plotted with regards to the cut.
Additionally, the peak voxel is observed. As part of the reconstruction is �nding the peak, a
cut which would classify the peak as empty would not lead to a meaningful reconstruction.
Figure 7.9 shows the described plot. The red line shows the percentage of peaks classi�ed as
path, as it declines for cuts above 600 photons, the cut needs to be set below. The percentage
of correctly classi�ed path and background voxels is plotted in blue and orange. The cut is
set to maximize the ratio of correctly identi�ed voxels for both classes. For balanced data the
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Figure 7.9: This plot shows the classi�cation quality of the reconstructions with regards to the
cut used to distinguish between the two voxel classes. The percentage of correctly �lled path
voxels is displayed in blue and of correctly identi�ed background voxels in orange. Additionally,
the percentage of as path classi�ed peak voxels is displayed in red. The standard derivation are
marked in the corresponding colors.

cut could be set to the intersection point of both functions. This would lead to approximately
97 % correctly classi�ed for both classes and a cut at ≈ 500 photons. But the data is highly
imbalanced as less than 1 % of the voxels are path voxels.

Conservative cut

The cut is set conservatively at 200 photons to correctly reconstruct more background voxels,
with the backdraw of a minor decrease of correctly identi�ed path voxels. With this cut about
93 % of the background voxels are correctly classi�ed with only a small decrease in the amount
of correctly identi�ed path voxels. A cut at 200 photons represents a path length of 20mm in
one voxel. Voxels which have ≤ 200 photons by simulation, will be identi�ed as background, if
the amount of photons is reconstructed correctly.
With this cut at 200 photons, the percentage of correctly identi�ed voxels of the two classes path
and background is de�ned. A corresponding plot is displayed in �gure 7.10. The percentage
of correctly identi�ed path voxel is (99.24 ± 2.84) % and for background voxels (92.81 ± 3.24) %.
For more than 85 % of the analyzed data, all path voxels are correctly identi�ed. Thereby, the
path can be narrowed to 8 % of the detector volume by losing only 0.8 % of the path voxels.
By setting this cut ≈ 0.8 % of the path voxels are not classi�ed correctly as path. The emitted
photons in these voxels are displayed in �gure 7.11. As the cut is set to 200 photons, voxels
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Figure 7.10: Percentage of correctly identi�ed voxels of the two classes path and background.
The path voxels are displayed in red and the background voxels in blue. Additional to the
histogram the mean values are displayed.

in which less than 200 photons have been emitted are lost, if the photon sum is reconstructed
correctly. In this reconstruction 29 path voxels are missed due to the cut. Additionally, voxels
are missed in which too little photons have been reconstructed. These have a mean value of
(822.2 ± 721.6) photons. 91 voxels are missed because of that.
In �gure 7.12 the classi�cation quality is plotted against the path length in voxels. The path

lengths are shown by a histogram in green and the percentages of correctly identi�ed voxels as
path and background are displayed in orange and blue. This plot reveals that for longer tracks
the percentage of correctly identi�ed background voxels decreases. Additionally, some events
show for shorter tracks lower percentages of correctly identi�ed path voxels with a minimum
at around 70 %. As these short paths only consist of less than 10 voxels, missing one already
leads to a big decrease of > 10 %.
In �gure 7.13 a sample reconstruction is displayed. The reconstructed �lled voxels and the label
path voxels are plotted in blue and red. The transparency of the voxels resembles the inverse
photon sum in the considered voxel with regards to the other voxels. The most intense colored
voxel resembles the peak. The event is evaluated with a cut at 1 photon and the discussed cut at
200 photons. Both times the reconstruction encloses the label path. On the left the plot for the
cut at one photon is displayed. The reconstruction �lls nearly half of the voxels. Most of these
voxels are transparent, which means only a small number of photons was reconstructed in
those. The cut at 200 photos, on the right, improves the number of falsely identi�ed background
voxels. With this cut the volume around the path is �lled in the reconstruction. Additionally,
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Figure 7.11: Photons emitted in voxels, which are falsely classi�ed as background voxels.
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Figure 7.12: This plot shows a histogram of the path lengths in voxels in green, the corresponding
y axis is on the right. Additionally the percentages of correctly identi�ed voxels as path and
background are displayed in orange and blue, with regards to the path length.
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Figure 7.13: This plot shows the comparison of the same event with two di�erent cuts at 1
and at 200 photons. The red voxels display the label and the blue ones the reconstruction. The
more transparent the color is, the less photons are assigned to this voxel. The two color labels
are valid for both plots.

�lled voxels can be found from the path in negative z direction. As these are transparent,
they are not predicted to be �lled with many photons. A higher cut could further improve
the amount of falsely identi�ed background voxels and minimize the volume de�ned by �lled
voxels around the path. This event is only a sample, in the appendix in �gures 1-9 nine more
sample events are displayed. In all cases the amount of falsely identi�ed background voxels
decreases with the cut at 200 photons, but the �lled voxels are still far more than the labels
provides. Additionally a second cut is analyzed.

Cut with a higher Background discrimination

The conservative cut approach at 200 photons, tries to keep as many path voxels �lled as
possible by increasing the amount of correctly identi�ed background voxels to an amount,
which helps to narrow the volume polluted by the path. In this subsection a higher cut is
taken to improve the amount of correctly identi�ed background voxels and further analyze the
reconstructed path structure.
With regards to �gure 7.9, the cut is now set with the goal to discriminate a higher background
rate. Still all peaks should be classi�ed as path and the rate of correctly classi�ed path voxels
should be high. Therefore, the cut is set at 550 photons. With this cut about 97 % of both classes
are correctly classi�ed and all peak voxels are classi�ed as path.
A cut at 550 photons results in (96.33 ± 6.58) % voxels correctly classi�ed as path and (97.17 ±
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Figure 7.14: This plot shows the comparison of the same event with two di�erent cuts at 200
and at 550 photons. The red voxels display the label and the blue ones the reconstruction. The
more transparent the color is, the less photons are assigned to this voxel. The two color labels
are valid for both plots.

1.48) % voxels correctly classi�ed as background, the corresponding plot is displayed in the
appendix, as �gure 10.
Figure 7.14 shows the comparison of one event evaluated with di�erent cuts at 200 and
550 photons. The label track is displayed in red and the reconstruction in blue. For the cut at
200 photons the track is enclosed by the reconstruction. Additionally, voxels are reconstructed
to be �lled at negative x and negative z. These are not �lled for the cut at 550 photons. For this
event the discrimination of the path is done better by the cut at 550, as all path voxels are recon-
structed correctly and less background voxels are reconstructed falsely. But all reconstructed
voxels in the right plot have approximately the same color intensity, which shows they contain
similar amounts of photons. This shows that the �lled path and background voxels are hard to
distinguish in the reconstruction. In the appendix nine other sample events are displayed with
the two cuts at 200 and 550 photons. For all nine sample events the higher cut at 550 photons
leads to a smaller amount of falsely identi�ed background voxels. In some cases, like displayed
in �gure 11, the cut at 550 photons creates �lled voxel enclaves, which are not connected to the
main �lled voxel cloud.
In �gure 7.15 the percentages of correctly classi�ed in dependency of the path length is dis-

played, with the new cut at 550 photons. In comparison the same plot for the cut at 200 photons
is displayed in �gure 7.12. With the new cut the percentage of correctly identi�ed background
voxels decreases less with the increase of path lengths. The new cut leads to a more stable
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Figure 7.15: This plot shows a histogram of the path lengths in voxels in green, the corresponding
y axis is on the left. Additionally the percentages of correctly identi�ed as path and background
are displayed in orange and blue, with regards to the path length.

amount of correctly identi�ed background voxels. The backdraw of this cut is the decreased
amount of events, for which all path voxels are correctly classi�ed, to ≈ 60%. This percentage
is at ≈ 85% with the cut at 200 photons.
The downside of the higher cut is, that more voxels are falsely identi�ed as background. In

this case 3.7 %. In �gure 7.16 the photons per missed path voxel are displayed. As the cut is
set at 550 photons, voxels which are simulated with a path length below 55mm, are missed,
when reconstructed correctly. For the analyzed data set, 263 voxels are missed, due to that, and
390 voxels because of too little photons reconstructed in the given voxel. The mean number of
photons missed per voxel is (933.0 ± 730.4) photons.

7.4.2 Summary

To successfully reconstruct the photon emission distribution with voxels, the voxels need to be
classi�ed correctly in path and background and the number of photons per voxel need to match
the label. The here presented results reach an AUC of 0.9904 for the analyzed data set. This
is a good value for the discrimination of two classes, as the optimum is one. The number of
correctly identi�ed path and background voxels depend on the chosen cut, which distinguishes
the two classes. The ROC curve displays, that combinations > 80 % background and > 90 %
path correctly identi�ed could be chosen. Less than one percent of the voxels are �lled by the
muon track, therefore it is important to correctly reconstruct as many path voxels as possible.
The background voxels are important, to narrow down the detector volume which includes
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Figure 7.16: Photons per voxel in voxels, which are falsely classi�ed as background voxels.

the track. In the last section two cuts, at 200 and at 550 photons are compared. The �rst one
narrows (99.24 ± 2.84) % of the path voxels to 7 % of the detector volume, while the bigger one
narrows (96.33 ± 6.58) % of the path voxels down to 3 % of the detector. In both cases all peak
voxels in the data are correctly identi�ed as path.
Additionally, the peak of the reconstructed distributions are analyzed. The peak positions
are reconstructed with a mean distance of (0.36 ± 0.47)m, between reconstructed and label
peak coordinates. The peak is reconstructed to the correct voxel in 19.5 % and for 74.6 % of
the analyzed events the distance is below 0.35m. For 85 % of the analyzed data the peak was
reconstructed with a distance ≤ 0.5m. In this case the peak can be enclosed to 0.8 % of the
detector volume.
Additionally, the photon emission distribution has been analyzed. The here presented re-
construction underestimates the amount of photons reconstructed in the peak, in average
(3915.16± 912.19) photons are missing. For the background voxels a mean of around 60 photons
is reconstructed and for the path voxels a mean of (1519.7 ± 634.0) photons. Even tough the
mean number of photons per path voxel is similar with (1587.0 ± 1426.3) photons, the widths
of the two distributions di�er by a factor of > 2. The photon distribution has two issues, on the
one hand to many voxels are �lled with photons, this leads to an overestimation of the total
photon sum per event. On the other hand the di�erences of photons reconstructed in the path
voxels and the label have a too wide spread. All in all, the reconstruction shows good results
for the classi�cation between empty and �lled voxels and the peak position. But the presented
reconstruction method does not deliver good photon emission distributions, as neither the
photon sum per event, nor the photon sum per peak voxel is reconstructed with a bearable
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precision. Therefore, the provided reconstruction method needs to be developed further to use
it for both spatial reconstruction and a reconstruction on the photon emission per voxel.



Chapter 8

Conclusion

In this work two reconstruction methods are developed, which reconstruct a muon track in a
liquid scintillation detector. On the one hand the coordinate reconstruction, which reconstructs
the track using characteristic points. On the other hand the voxel reconstruction, which recon-
structs the photon emission distribution in the detector with the help of voxel representation.
In chapter 6 and 7 the two developed graph convolution networks and the obtained results are
presented. In this chapter these results are shortly summarized and interpreted. Afterwards,
an outlook is given.

8.1 Summary and Conclusion

8.1.1 Coordinate Reconstruction

For this reconstruction method the muon track is described by three points de�ning the track,
which are the start, peak and end point of the track inside the detector. As the simulated muon
tracks are straight with a discrete peak at a random position along the track, these coordinates
de�ne the track. The used data is Toy Monte Carlo simulated. The goal of the coordinate
reconstruction is �rstly to reconstruct these points. Secondly, the graph convolution network
architecture was tested on whether or not it is a suitable method for the given task.
The results from this reconstruction can be described by the mean distances between recon-
structed and label for the three characteristic points. On the start point a mean distance of
dS = (0.16 ± 0.20)m was reached. The start points are the simplest to reconstruct, as in the used
simulation the measurement starts with the track entering the detector. Thereby the PMT with
the �rst hit needs to be the one enclosing the start point. The end points are reconstructed
with a mean distance of dE = (0.21 ± 0.11)m. The peak points are reconstructed with a mean
distance of dP = (0.22 ± 0.14)m. This is the biggest mean distance for the three reconstructed
coordinates. The peak is simulated on a random position along the track. This is typically not
on one of the detector skins, where the start and end points are. Therefore, the peak coordinate
has three free parameters and is thereby the most di�cult to reconstruct. With this method
85 % of the peaks in the analyzed data set are reconstructed with a distance to the label ≤ 0.4m.
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These peaks can be narrowed to 0.4 % of the detector volume, which is 64m3.
The motivation for the coordinate reconstruction was to �nd out whether or not a GCN is a
suitable architecture for the reconstruction of muon tracks in a liquid scintillator. From the
presented results this method was successful on the given task.

8.1.2 Voxel Reconstruction

For the voxel reconstruction the photon emission distribution is supposed to be reconstructed
in voxel representation. The voxel representation displays on the one hand the spatial extent
of the muon tracks. The voxels through which the tracks pass are classi�ed as path voxels and
thereby de�ne the tracks. On the other hand and additional to the previous reconstruction the
photon emission distribution is reconstructed. The voxel in which the most photons have been
emitted is de�ned as the peak voxel. The same simulation as for the previous reconstruction
method is used, but here the photon emission distribution in voxel representation in used as
label.
The results of this reconstruction correspond either to the spatial reconstruction quality or
the photon emission reconstruction quality of the used method. The spatial reconstruction
quality is de�ned by the volume in the detector, which can be discriminated as not �lled by the
track. For this reconstruction (99.24 ± 2.84) % of the path voxels can be discriminated to 7 % of
the detector volume, with the de�nition that all voxels reconstructed with ≤ 200 photons are
considered as empty. 100 % of the peak voxels are reconstructed as path voxels. Additionally,
the peak voxels are reconstructed with a mean distance to the label of (0.36 ± 0.47)m. For 85 %
of the analyzed data the peak was reconstructed with a distance ≤ 0.5m. These peaks can be
narrowed to 0.8 % of the detector volume. Summarized, the separation between the two classes
is performed well, with AUC= 0.9904. Additionally, the peak was reconstructed nicely, as it is
with both provided cuts on all given data classi�ed as path.
For the photon emission distribution the mean photon di�erences on path, background and peak
voxels were analyzed. For the background voxels a mean of around 60 photons is reconstructed.
In the background no photon was emitted in the simulation. For the path voxels a mean value
of (1519.7 ± 634.0) photons was reconstructed. Even tough the mean number of photons per
path voxel is similar with (1587.0 ± 1426.3) photons, the widths of the two distributions di�er
by a factor of > 2. For the peak voxel in average (3915.16 ± 912.19) photons are missing. All in
all, too many voxels are �lled in the reconstruction with photons. The photons per path voxel
have a similar average value as the simulation, but the spread was not reconstructed correctly.
Additionally, the peak voxel is drastically under estimated by the reconstruction. This makes
the reconstructed photon emission distribution unreliable.
All in all, this reconstruction method has good spatial qualities, but the reconstructed photon
emission distribution is not reliable. The spatial discrimination of background voxels could be
developed further, to narrow muon tracks to path-like fractions of the detector. But to use the
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photon emission distribution the presented work does not provide a su�cient precision and
needs therefore further development.

In both presented reconstruction methods the usage of graph convolution networks is promis-
ing. For the presented implementations nice results for the spatial reconstruction are obtained.
The coordinate reconstruction shows, that already a simple approach delivers a good spatial
resolution. Therefore, the implementation of the geometrical structure in the graph seems to
obtain the expected bene�ts.

8.2 Outlook

The motivation of this work is an improved muon veto for large liquid scintillation detectors like
JUNO. In the JUNO detector a main background source for reactor neutrinos are cosmogenics.
These occur in showers along muon tracks inside the detector. JUNOs muon veto approach
is to veto the whole LSD, or a cylindrical volume around a muon track, depending on the
quality of the muon track measurements in the Cerenkov detector and the muon trackers.
It has a predicted e�ciency of 83 % on the IBD, which is the detection reaction for reactor
neutrinos at JUNO. This is discussed in detail in chapter 3.3. A reconstruction method based
on the presented work could drastically improve the muon veto. For the voxel reconstruction
approach the peak along the muon track, which resembles a shower, could be discriminated to
7 % of the detector volume, for all peaks in the considered data set. A reconstruction method
like this could drastically decrease the dead time for JUNO, which would improve the e�ciency
on the IBDs. As neutrinos interact rarely and the expected amount of reactor neutrino events
at JUNO is 84 /day, any improvement on the IBD e�ciency of the muon veto increases the
statistics of the experiment.
The here presented methods were trained and evaluated on Toy Monte Carlo data. The simu-
lated detector has the dimensions of 4 × 4 × 4 m3 and is thereby very small in comparison to the
JUNO detector. An optical coverage of 100 % has been implemented, while JUNO has around
75 %. Additionally, the simulation does not include, di�erent paths, Cerenkov light, scattering
on the PMTs, attenuation and disturbances by other processes in the detector. Thereby, the
obtained results are not directly comparable to real detectors like JUNO and only give a promis-
ing outlook on further developments of this reconstruction method and its applications.
To further improve the presented architecture, the photon emission distribution would need to
be improved. Even though the loss function was optimized with a lot of e�ort, the obtained loss
function does deliver good results on the photon emissions. One possible idea would be a loss
function specially developed for sparse data. Additionally, the geometric loss function does not
work on the 20× 20×20 data structure. An improved geometric loss function for this data struc-
ture could also improve the results. One of the problems of the photon emission distribution is
that the photon emission in the path voxels are systematically under estimated, while the total
photon sum is too large. With a loss term on the total photon sum the reconstructed photon



84 CHAPTER 8. CONCLUSION

sum could be improved, which would result in a smaller amount of photons per �lled voxel,
but could after more training result in less �lled voxels, with a higher photon sum. Another
option is to include a some dynamic edge convolution layers after the used architecture. These
rearrange the graph with every iteration by connecting the nodes to their closets neighbors in
the feature space. This could improve the predictions.
With an improved photon emission distribution the network could be used on more realistic
data. Firstly, further physical processes could be included, afterwards the detector could be
simulated more realistically, by implementing a smaller optical coverage and random noise.
With more realistic data the presented approach could be further developed and the results
validated.
Even though the photon emission reconstruction did not deliver the hoped for precision, the spa-
tial reconstruction of the muon tracks performed quite good for both reconstruction approaches.
The photon emission distribution has the bene�t, that it allows an energy reconstruction from
the emitted photons. This is not possible for the spatial reconstruction as implemented in this
work. But for muon induced shower identi�cation of muon track identi�cation the spatial
information of the reconstruction is su�cient. Therefore, with a lot of further development and
research the coordinate reconstruction could become useful for muon vetoes or comparable
applications. But to validate the obtained results �rstly the developed methods need to be
approved on more realistic data.

8.2.1 Potential Application at Theia

The Theia experiment o�ers an outlook in the further future. Theia is a proposed long baseline
experiment, with superior features. It combines liquid scintillation light with a water Cerenkov
detector and a new generation of light detectors, the LAPPDs. Theia is described in detail in
chapter 3.4.
Due to the wbLS Theia unites the bene�ts of wCD and LSD. Additionally, the LAPPDs have a
great spatial resolution. As the scintillation light is proportional to the deposited energy, the
energy can be reconstructed much better than in a wCD. In case the two light sources can
be distinguished, the Cerenkov light allows a good directional reconstruction. The missing
pieces are exceptional techniques analyzing the given data. With a good spacial reconstruction
of the deposited energy, Theia could work as a light-based time projection chamber (TPC).
TPCs are particle detectors, which detect the particle tracks inside the detector volume, over
ionization processes. Thereby, detailed discrete information along the particle track is obtained,
without direct interactions between the particle and the measuring elements of the detector. In
contrast to LSD and wCD, were the information about the track is convoluted with the detector
geometry and measured on the walls of the detector. For Theia the light-based TPC approach
would be obtained by reconstruction algorithms, which return discrete information about the
track inside the detector volume, using light as signal.
The here presented work is supposed to take a �rst step into the direction of reconstruction
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methods like this. The GCN approach taken in this work obtained good results on the spatial
resolution. A similar approach could be used for Theia. The combination of the exceptional
spatial resolution of the LAPPDs with a graph network architecture including the geometric
structure of the detector, could be a promising approach. But improved results on the energy
reconstruction would be necessary to obtain the desired TPC functionality. To develop graph
based reconstruction methods for real detectors, more research on this topic needs to be done.
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List of Abbreviations

AUC area under the curve

CE Cross Entropy Loss

DGL Deep Graph Library

EC Edge Convolution

GC Graph Convolution

GCN Graph convolution networks

GeomA geometric loss function without 3D gradients

GeomB geometric loss function with 3D gradients

geomLoss geometric loss library

GNN Graph neural networks

GWS Glashow-Weinberg-Salam model

IBD inverse � decay

IH inverted hierarchy

JUNO Jiangmen Underground Neutrino Observatory

LAB linear alkyl benzene

LAPPDs Large Area Picosecond Photodetectors

LSD liquid scintillation detector

MMD Maximum Mean Discrepancy

MSE Mean Squared Error Loss

MSW Mikheyev-Smirnov-Wolfenstein

MT muon tracker
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NH normal hierarchy

NLL Negative Log Likelihood

OT Optimal Transport

pc perfect cut

PMNS Pontecorvo-Maki-Nakagawa-Sakata

PMTs Photomultiplier tubes

QR Quadratic Reconstruction

ReLU Recti�ed Linear Unit

ROC receiver operating characteristic

SM Standard Model of Elementary Particles

SURF Sanford Underground Research Facility

TPC time projection chamber

wbLS waterbased Liquid Scintillator

wCD water Cerenkov detector
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Figure 1: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 2: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 4: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 5: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 6: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 7: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 8: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 9: This plot shows the comparison of the same event with two di�erent cuts at one and
at 200 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 10: Percentage of correctly identi�ed voxels of the two classes path and background. The
path voxels are displayed in red and the background voxels in blue. Additional to the histogram
the mean values are displayed.
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Figure 11: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 12: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 13: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 14: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.

X

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0

Y
2.0

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

Z

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Cut at 200 photons

X

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0

Y
2.0

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

Z

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Cut at 550 photons

0 1000 2000 3000 4000 5000 6000 7000

Track [Photons]

0 250 500 750 1000 1250 1500 1750

Reco [Photons]

Reconstruction and Truth of one event with different Cuts

Figure 15: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 16: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 17: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 18: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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Figure 19: This plot shows the comparison of the same event with two di�erent cuts at 200 and
at 550 photons. The red voxels display the label and the blue ones the reconstruction.
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