Monte–Carlo based studies for the COBRA Experiment Estimated Muon Background for the R&D Set–up

Nadine Heidrich

University of Hamburg

29. February 2012

Muon Background

- Introduction to the R&D set-up at LNGS
- 2 Muon background in general
- **③** Explanation of the Monte Carlo simulations
- 4 Calculation of background rates
- 6 Conclusion & Outlook

Introduction to the R&D Set-up at LNGS

Activities in 2011:

- Move into the Heidelberg-Moskow hut in spring 2011
 - Update of the complete passive shielding
- R&D set-up at LNGS can house 64 1 cm^3 CPG detectors
- Since late summer 2011 16 detectors are running
 - With new FADC readout
 - Full 64 array will be installed soon \rightarrow Next 16 detectors will be installed in March/April 2012

Shielding:

Introduction to the R&D Set-up at LNGS

- High purity copper
- 2t lead
 - \rightarrow inner layer: ultra low background lead
- Radon-tight foil and Nitrogen flushing
- EMI shielding
- 7 cm boron loaded PE

Muon Background in general

Background: muons

- Component of cosmic radiation
- Flux reduced due to the overburden in the underground laboritory (LNGS: 3400 mwe)
 - $\to \sim \ 2.58 3.22 \cdot 10^{-8} \ \mu/s/cm^2$

Muon Background in general

Background: muons

- Component of cosmic radiation
- Flux reduced due to the overburden in the underground laboritory (LNGS: 3400 mwe) $\rightarrow \sim 2.58 - 3.22 \cdot 10^{-8} \,\mu/s/cm^2$

Background: muon-induced

- Production of fast neutrons in the rock and in the shielding itself (\rightarrow shielding, veto)
 - $\rightarrow \sim ~3\cdot 10^{-9}~\text{neutrons/s/cm}^2$
 - \rightarrow Very hard energy spectrum ($\sim {\rm GeV})$
- Cosmogenic radioactivity

Explanation of the Monte Carlo Simulations

For the simulation Geant4 4.9 is used in combination with GDML for the R&D–geometry (EMI shielding not considered).

Muons are simulated on a cube surrounding the geometry with an energy and angular distribution.

		Cut	Events ROI	Background Rate
			$(2.7-2.9\mathrm{MeV})$	[counts/keV/yr/kg]
Muons	\sim 10 yr	without	11	$(1.6 \pm 0.5) \cdot 10^{-2} \ (< 2.55 \cdot 10^{-2})$

Background Rate: Muons

Multiplicity in the ROI (2.7 - 2.9 MeV)Only single-site events are considered!

		Cut	Events ROI	Background Rate
			$(2.7-2.9\mathrm{MeV})$	[counts/keV/yr/kg]
Muons	\sim 10 yr	without	11	$(1.6 \pm 0.5) \cdot 10^{-2}$
		Multiplicity	2	$< 0.848 \cdot 10^{-2}$

Background Rate: Muons

Black: without cuts **Red:** time cut Comparission between events detected in the vetos and in the detector itself \rightarrow time cut

		Cut	Events ROI	Background Rate
			(2.7 - 2.9 MeV)	[counts/keV/yr/kg]
Muons	\sim 10 yr	without	11	$egin{array}{l} (1.6\pm0.5)\cdot10^{-2} \ (<2.55\cdot10^{-2}) \end{array}$
		Multiplicity	2	$< 0.848 \cdot 10^{-2}$
		Time	1	$< 0.625 \cdot 10^{-2}$

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Background Rate: Muons

Special cases: Muons are simulated as point sources with direction (0,0,-1) in different distances (x-axis) from the dectector \rightarrow Muons are not passing the detector chamber

Distance	Events ROI	Events ROI
	(2.7 - 2.9 MeV)	Multiplicity
Lead (25 cm)	0	0
Lead/Copper (35 cm)	9	1
Copper/Chamber (39 cm)	56	1

Distance	Events ROI	Events ROI
	(2.7 - 2.9 MeV)	Multiplicity
Lead (25 cm)	0	0
Lead/Copper (35 cm)	9	1
Copper/Chamber (39 cm)	56	1

 \rightarrow Same time cut: 0 events remain

Conclusion & Outlook

Conclusion

- Background from muons can be reduced due to multiplicity and time cuts
- But: remains in the order $10^{-2}\,\text{counts/kg/keV/yr}$

Conclusion & Outlook

Conclusion

- Background from muons can be reduced due to multiplicity and time cuts
- But: remains in the order $10^{-2}\, {\rm counts/kg/keV/yr}$

Outlook

- Test veto within the shielding (between PE and Pb)
- Estimation of background from other sources
 → radioactive, cosmogenic,...
- Estimation of background for the large scale set-up

Conclusion & Outlook

Conclusion

- Background from muons can be reduced due to multiplicity and time cuts
- But: remains in the order $10^{-2}\,\text{counts/kg/keV/yr}$

Outlook

- Test veto within the shielding (between PE and Pb)
- Estimation of background from other sources
 → radioactive, cosmogenic,...
- Estimation of background for the large scale set-up

Thank you for your attention!

Backup Slides

Muon Background

Background Rate: Muons

Consideration of the two veto planes:

	Time: 1. Event	Time: 2. Event
	[ns]	[ns]
Detector	5.486	4.995

Consideration of the two veto planes:

	Time: 1. Event	Time: 2. Event
	[ns]	[ns]
Detector	5.486	4.995

T first events in the veto: $\Delta T\sim 2\,\text{ns}$

Consideration of the two veto planes:

	Time: 1. Event	Time: 2. Event
	[ns]	[ns]
Detector	5.486	4.995

T first events in the veto: $\Delta T \sim 2 \text{ ns}$ Distance Source–Veto: $0.57 \text{ m} \rightarrow \Delta T = 1.9 \text{ ns}$ Size of set–up (Z–axis): $1.1 \text{ m} \rightarrow \Delta T = 3.6 \text{ ns}$ \rightarrow Cut at 5 ns in the detector: 1 event remain

UH iti Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG