Development of a shield based on Monte–Carlo studies for the COBRA Experiment

Nadine Heidrich

University of Hamburg

06. March 2013

Development of a shield

- Developement of an efficient radiation shield for a large scale COBRA experiment
- Monte–Carlo based: All simulations were done with geant4 9.4.p01
- Comparing commercially available shielding materials
- \rightarrow Goal: Identification of the most effective combination of material

External radiation sources

- Most important external radiation sources are muons, neutrons and $\gamma-{\rm radiation}$
- Muonic component of cosmic rays is suppressed and hadronic component is negligible
 - Except **muon-induced neutrons** originating from the rock material or the shielding materials itself
 - Can have energies up to GeV, propagate large distances and lose energy by nucleus recoils
- $\gamma\text{-radiation}$ mainly becomes important when originating from neutron interactions

 \rightarrow Main focus of interest was neutron radiation from rock material and neutron–induced radiation originating from shielding materials

Energy Bins	Neutron Flux [1] $[10^{-6} cm^{-2} s^{-1}]$	Energy Bins	Neutron Flux [2] $[10^{-6} cm^{-2} s^{-1}]$
(0, 0) = 0	1.00 0.00		
(0 - 50) meV	1.08 ± 0.02		
50 meV – 1 keV	1.84 ± 0.20		
1 keV – 2.5 MeV	0.54 ± 0.01	(1 – 2.5) MeV	0.14 ± 0.12
(2.5 – 5) MeV	0.27 ± 0.14	(2.5 – 5) MeV	0.13 ± 0.04
(5 – 10) MeV	0.05 ± 0.01	(5 – 10) MeV	0.15 ± 0.04
(10 – 15) MeV	$(0.6 \pm 0.2) \cdot 10^{-3}$	(10 – 15) MeV	$(0.4 \pm 0.4) \cdot 10^{-3}$
(15 – 25) MeV	$(0.5 \pm 3.0) \cdot 10^{-6}$		

[1] P.Belli et al. Deep underground neutron flux measurement with large BF_3 counters

[2] F. Arneodo et al. Measurement of neutron flux produced by cosmic ray muons with LVD at Gran Sasso

Development of a shield

- Examine each material as a single layer shield for its radiation interaction properties
- Maximize the attenuation for a specific radiation source by combining multiple materials
- \rightarrow Building a multilayer shield

• Monoenergetic neutrons with $1\,\text{keV}-15\,\text{MeV}$ were aimed at a $1\,\text{m}$ thick slab, subdivided into $1\,\text{mm}$ thick slices

- Monoenergetic neutrons with $1\,\text{keV}-15\,\text{MeV}$ were aimed at a $1\,\text{m}$ thick slab, subdivided into $1\,\text{mm}$ thick slices
- Considered materials:

Material	Composition [ratio]	Density [g/cm ³]
Copper	nat.	8.96
Lead	nat.	11.35
Iron	nat.	7.824
PE	CH ₂ [1:2]	0.92
PE+Li (7.5%)	CH ₂ ,Li [1:2:0.24]	1.06
PE+B (30%)	CH ₂ ,B [1:2:0.34]	1.12
PE+B (5%)	CH ₂ ,B [1:2:0.18]	1.6

Neutron/Photon Counts: $E_n = 5 \text{ MeV}$

Neutron Counts $E_n=5$ MeV, Cut: $E_{kin}>1$ MeV

Photon Counts $E_n = 5 \text{ MeV}$

effective neutron attenuation (<10%): <10 cm

(n, γ) self–shielding (<10%): ~20 cm

Multilayer Properties

- Standard neutron shield is built out of three layers (metal, moderator, absorber)
- In this study the moderator and the absorber were combined (doped PE)
- In regard to other important background sources (natural radioactivity) copper was used as inner layer

- In this study the moderator and the absorber were combined (doped PE)
- In regard to other important background sources (natural radioactivity) copper was used as inner layer
- Monoenergetic neutrons with 1 keV 15 MeV were aimed at a 1 m thick slab, subdivided into 1 mm thick slices, of three materials

Lead (30 cm) – PE+Li/B5 (10 cm) – Copper PE+Li/B5 (10 cm) – Lead (50/40 cm) – Copper

Neutron Counts $E_n=5 \text{ MeV}$, Cuts: $E_{kin}>1 \text{ MeV}$

Photon Counts $E_n = 5 \text{ MeV}$

Lead (30 cm) – PE+Li/B5 (10 cm) – Copper PE+Li/B5 (10 cm) – Lead (50/40 cm) – Copper

Summary

- Multilayer Result:
 - Lead (30 cm) PE+Li/B5 (10 cm) Copper (10 cm):
 - + Effective neutron (<0.01%) and γ (<0.1%) attenuation after \sim 50 cm
 - PE+Li (10 cm) Lead (50 cm) Copper:
 - + Effective neutron (<0.1%) and γ (<0.1%) attenuation after \sim 60 cm

Summary

- Multilayer Result:
 - Lead (30 cm) PE+Li/B5 (10 cm) Copper (10 cm):
 - + Effective neutron (<0.01%) and γ (<0.1%) attenuation after \sim 50 cm
 - PE+Li (10 cm) Lead (50 cm) Copper:
 - + Effective neutron (<0.1%) and γ (<0.1%) attenuation after \sim 60 cm
 - PE+B5 (10 cm) Lead (40 cm) Copper:
 - Effective neutron (<0.001%) and γ (<0.01%) attenuation after \sim 50 cm

Summary

- Multilayer Result:
 - Lead (30 cm) PE+Li/B5 (10 cm) Copper (10 cm):
 - + Effective neutron (<0.01%) and γ (<0.1%) attenuation after \sim 50 cm
 - PE+Li (10 cm) Lead (50 cm) Copper:
 - + Effective neutron (<0.1%) and γ (<0.1%) attenuation after \sim 60 cm
 - PE+B5 (10 cm) Lead (40 cm) Copper:
 - Effective neutron (<0.001%) and γ (<0.01%) attenuation after \sim 50 cm

Thank you for your attention!

