Current and Future Neutrino Experiments

Martin Hierholzer

Students' Seminar, Universität Hamburg

2008-07-03

NuExps.tex – July 3, 2008 – 1(29)

- introduction
- neutrino sources
- detector types
- experimental performance
- summary

here only neutrino oscillation physics covered

most oscillation parameters known:

 $\sin^{2} \Theta_{23} > 0.90 \ (90\% \text{ C.L.}) \\ |\Delta m_{23}^{2}| = (2.43 \pm 0.13) \cdot 10^{-3} \text{ eV} \\ \tan^{2} \Theta_{12} = 0.45 \pm 0.08 \\ \Delta m_{21}^{2} = (8 \pm 0.5) \cdot 10^{-5} \text{ eV}^{2}$

- missing: Θ_{13} , $\delta_{
 m CP}$, mass hierarchy
- goals of current and future experiments:
 - determination of remaining parameters
 - precision measurement of known parameters (MINOS...)

NuExps.tex - July 3, 2008 - 3(29)

- here only neutrino oscillation physics covered
- most oscillation parameters known:

 $\begin{aligned} \sin^2 \Theta_{23} &> 0.90 \ (90\% \text{ C.L.}) \\ |\Delta m_{23}^2| &= (2.43 \pm 0.13) \cdot 10^{-3} \text{ eV}^2 \\ \tan^2 \Theta_{12} &= 0.45 \pm 0.08 \\ \Delta m_{21}^2 &= (8 \pm 0.5) \cdot 10^{-5} \text{ eV}^2 \end{aligned}$

- \circ missing: Θ_{13} , $\delta_{
 m CP}$, mass hierarchy
- goals of current and future experiments:
 - determination of remaining parameters
 - precision measurement of known parameters (MINOS...)

NuExps.tex - July 3, 2008 - 3(29)

- here only neutrino oscillation physics covered
- most oscillation parameters known:

 $\sin^2 \Theta_{23} > 0.90 \ (\overline{90\%} \ \text{C.L.}) \\ |\Delta m_{23}^2| = (2.43 \pm 0.13) \cdot 10^{-3} \text{ eV}^2 \\ \tan^2 \Theta_{12} = 0.45 \pm 0.08 \\ \Delta m_{21}^2 = (8 \pm 0.5) \cdot 10^{-5} \text{ eV}^2$

- ullet missing: Θ_{13} , $\delta_{
 m CP}$, mass hierarchy
- goals of current and future experiments:
 - determination of remaining parameters
 - precision measurement of known parameters (MINOS...)

NuExps.tex - July 3, 2008 - 3(29)

- here only neutrino oscillation physics covered
- most oscillation parameters known:

 $\begin{aligned} \sin^2 \Theta_{23} &> 0.90 \ (90\% \text{ C.L.}) \\ |\Delta m_{23}^2| &= (2.43 \pm 0.13) \cdot 10^{-3} \text{ eV}^2 \\ \tan^2 \Theta_{12} &= 0.45 \pm 0.08 \\ \Delta m_{21}^2 &= (8 \pm 0.5) \cdot 10^{-5} \text{ eV}^2 \end{aligned}$

- missing: Θ_{13} , $\delta_{
 m CP}$, mass hierarchy
- goals of current and future experiments:
 - determination of remaining parameters
 - precision measurement of known parameters (MINOS...)

"precision era of neutrino physics"

Physics Motivation

- Hierarchy: matter effect (long baseline)
- CP-phase: precise measurement (medium baseline)
- Θ_{13} : "vacuum" oscillations ("short" baselines)

Physics Motivation

NuExps.tex – July 3, 2008 – 5(29)

Requirements for Future Experiments

requirements to the neutrino sources:

- higher intensities
- smaller energy distributions
- purer or better known composition (flavours and $u/\overline{
 u}$)
- requirements to the detectors:
 - higher target masses ("Megaton" detectors required)
 - purer flavour separation, higher energy resolution
 - better shielding or separation from background
- new technologies required

NuExps.tex - July 3, 2008 - 6(29)

Neutrino Sources

- Super Beams
- Beta Beams
- Neutrino Factories
- not covered here:
 - reactor neutrinos
 - solar and atmospheric neutrinos
 - geo-neutrinos
 - astronomical neutrino sources

NuExps.tex – July 3, 2008 – 7(29)

- conventional beams: $\pi/{
 m K}$ decay: $u_{\mu}/\overline{
 u}_{\mu}$
- high intensity (e.g. upgraded existing beams)

- on axis: wide energy distribution
- off axis: narrow energy distribution
- high intensity needed for off axis operation

NuExps.tex – July 3, 2008 – 8(29)

- conventional beams: $\pi/{
 m K}$ decay: $u_{\mu}/\overline{
 u}_{\mu}$
- high intensity (e.g. upgraded existing beams)

- on axis: wide energy distribution
- off axis: narrow energy distribution
- high intensity needed for off axis operation

NuExps.tex – July 3, 2008 – 8(29)

NuExps.tex - July 3, 2008 - 8(29)

- conventional beams: $\pi/{
 m K}$ decay: $u_{\mu}/\overline{
 u}_{\mu}$
- high intensity (e.g. upgraded existing beams)

- on axis: wide energy distribution
- off axis: narrow energy distribution
- high intensity needed for off axis operation

NuExps.tex – July 3, 2008 – 8(29)

J-PARC (T2K)

• J-PARC (Tokai, Japan): 50 GeV proton synchrotron

NuExps.tex - July 3, 2008 - 9(29)

J-PARC (T2K)

- J-PARC (Tokai, Japan): $50~{
 m GeV}$ proton synchrotron
- beam power: 0.75 MW, 10^{21} POT/year
- neutrino energy $0.7~{
 m GeV}~(2^\circ~{
 m OA})$ or $0.55~{
 m GeV}~(3^\circ~{
 m OA})$
- energy tuneable by bending magnet after the horn (?)
- main PS under construction (LINAC and RCS finished)
- will start in early 2009

Project X

National Project with International Collaboration

Gina Rameika, P5 Meeting at SLAC, February 21, 2008

NuExps.tex - July 3, 2008 - 10(29)

DUSEL

NuExps.tex - July 3, 2008 - 11(29)

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto
 u_\mu$
- required components:
 - 🔹 proton driver (special requirements: short bunches, ...
 - target for muon production
 - buncher and cooler
 - $_{\odot}$ acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - \sim storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto
 u_\mu$
- required components:
 - proton driver (special requirements: short bunches, ...)
 - target for muon production
 - buncher and cooler
 - \bullet acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - \circ storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

muon storage/decay ring

NuExps.tex – July 3, 2008 – 12(29)

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto
 u_\mu$
- required components:
 - proton driver (special requirements: short bunches, ...)
 - target for muon production (mercury-jet, 20--30 m/s)
 - buncher and cooler
 - \bullet acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto
 u_\mu$
- required components:
 - proton driver (special requirements: short bunches, ...)
 - target for muon production (mercury-jet, $20\text{--}30~\mathrm{m/s})$
 - buncher and cooler
 - \sim acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - \circ storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

- muon storage/decay ring
- $\bullet~50\%\, \overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\, \overline{
 u}_{e_{\mu}}$
- <u>"golden channel"</u>: $\nu_e \mapsto \nu_\mu$

- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

NuExps.tex - July 3, 2008 - 12(29)

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto \nu_\mu$
- required components:
 - proton driver (special requirements: short bunches, ...)
 - target for muon production (mercury-jet, $20\text{--}30~\mathrm{m/s})$
 - buncher and cooler
 - acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

Super NuFact Beta

Neutrino Factories

NuExps.tex - July 3, 2008 - 12(29)

Martin Hierholzer Current and Future Neutrino Experiments

- muon storage/decay ring
- $50\%\,\overline{
 u}_{\mu}$ and $50\%\,
 u_e$ or $50\%\,
 u_{\mu}$ and $50\%\,\overline{
 u}_e$
- "golden channel": $u_e \longmapsto
 u_\mu$
- required components:
 - proton driver (special requirements: short bunches, ...)
 - target for muon production (mercury-jet, 20--30 m/s)
 - buncher and cooler
 - acceleration to $20~{
 m GeV}$ (recirculating linac and synchrotrons)
 - storage ring (35% muon decays in downward-going straight)
- R&D in progress (also to create muon colliders...)
- cooling of muons: demonstration experiment in 2006 (MANX)
- challenge: short muon life time

Beta Beams

- first proposed in 2002 by P. Zucchelli ("easier" than NuFact)
- beta-decay of stored ions: pure beam of $u_e/\overline{
 u}_e$
- ion choice:
 - ⁶He²⁺ to produce $\overline{\nu}_e$
 - ${
 m ^{18}Ne^{10+}}$ to produce u_e
 - rare earth nucleai for monochromatic beams
 - half-lives $\mathscr{O}(1\,\mathrm{s})^{\mathrm{l}}$
- required components:
 - proton driver (2 GeV)
 - ISOL Target and Ion Source
 - accelerators: LINAC (to $20 100 \,\mathrm{MeV/u}$), then RCS (to $300 \,\mathrm{MeV/u}$)
 - further acceleration to $\gamma \sim 150$ (e.g. SPS).
 - decay ring: long straight sections $(\sim 2500~{
 m m})$

NuExps.tex – July 3, 2008 – 13(29)

Beta Beams

- first proposed in 2002 by P. Zucchelli ("easier" than NuFact)
- beta-decay of stored ions: pure beam of $u_e/\overline{
 u}_e$
- ion choice:
 - ⁶He²⁺ to produce $\overline{\nu}_e$
 - ${
 m ^{18}Ne^{10+}}$ to produce u_e
 - rare earth nucleai for monochromatic beams
 - half-lives $\mathscr{O}(1\,\mathrm{s})$
- required components:
 - proton driver $(2 \, \mathrm{GeV})$
 - ISOL Target and Ion Source
 - \bullet accelerators: LINAC (to $20-100\,{
 m MeV/u}$), then RCS (to $300\,{
 m MeV/u}$)
 - further acceleration to $\gamma \sim 150$ (e.g. SPS)
 - \sim decay ring: long straight sections ($\sim 2500~{
 m m}$)

NuExps.tex - July 3, 2008 - 13(29)

Super NuFact Beta

Beta Beams

NuExps.tex – July 3, 2008 – 13(29)

Beta Beams

- first proposed in 2002 by P. Zucchelli ("easier" than NuFact)
- beta-decay of stored ions: pure beam of $u_e/\overline{
 u}_e$
- ion choice:
 - ⁶He²⁺ to produce $\overline{\nu}_e$
 - ${
 m ^{18}Ne^{10+}}$ to produce u_e
 - rare earth nucleai for monochromatic beams
 - half-lives $\mathscr{O}(1\,\mathrm{s})$
- required components:
 - proton driver (2 GeV)
 - ISOL Target and Ion Source
 - accelerators: LINAC (to $20-100\,{
 m MeV/u}$), then RCS (to $300\,{
 m MeV/u}$)
 - further acceleration to $\gamma \sim 150$ (e.g. SPS)
 - decay ring: long straight sections ($\sim 2500~{
 m m}$)

Super NuFact Beta

Beta Beam Example: EURISOL Design Study

NuExps.tex - July 3, 2008 - 14(29)

Detector Types

- Water Čherenkov
- Liquid Scintillator
- Tracking Calorimeters
- Liquid Argon Time Projection Chambers

NuExps.tex – July 3, 2008 – 15(29)

- active target material: water (or ice)
- detection of secondary particle by Čherenkov light
- Čherenkov light detected by PMTs
- proven technology, successfully used in many experiments
- very good scaleable to large target masses
- cheap (or free) target material
- \circ angular resolution: $< 2^\circ$
- caveats:
 - big volume, large cavernes needed (if underground)
 - bad energy resolution $(\Delta L/E \sim 70\%)$
 - low background rejection
 - no magnetization possible (no charge measurement)

NuExps.tex – July 3, 2008 – 16(29)

- active target material: water (or ice)
- detection of secondary particle by Čherenkov light
- Čherenkov light detected by PMTs
- proven technology, successfully used in many experiments
- very good scaleable to large target masses
- cheap (or free) target material
- angular resolution: $< 2^\circ$
- caveats:
 - big volume, large cavernes needed (if underground)
 - bad energy resolution $(\Delta L/E \sim 70\%)$
 - low background rejection
 - no magnetization possible (no charge measurement)

NuExps.tex - July 3, 2008 - 16(29)

- active target material: water (or ice)
- detection of secondary particle by Čherenkov light
- Čherenkov light detected by PMTs
- proven technology, successfully used in many experiments
- very good scaleable to large target masses
- cheap (or free) target material
- angular resolution: $< 2^\circ$
- caveats:
 - big volume, large cavernes needed (if underground)
 - bad energy resolution ($\Delta L/E \sim 70\%$)
 - low background rejection
 - no magnetization possible (no charge measurement)

- u_e and u_μ can be distinguished on a statistical basis
- energy threshold for detection: $5~{
 m MeV}~(3.5~{
 m MeV}$ for D_2O)
- suitable for:
 - solar neutrinos (only ⁸B)
 - atmospheric neutrinos
 - accelerator neutrinos
 - super novae
- present examples: Super-Kamiokande, SNO (D₂O), Antares, IceCube

NuExps.tex – July 3, 2008 – 17(29)

- u_e and u_μ can be distinguished on a statistical basis
- energy threshold for detection: $5~{
 m MeV}~(3.5~{
 m MeV}$ for D_2O)
- suitable for:
 - solar neutrinos (only ⁸B)
 - atmospheric neutrinos
 - accelerator neutrinos
 - super novae
- present examples: Super-Kamiokande, SNO (D₂O), Antares, IceCube

NuExps.tex – July 3, 2008 – 17(29)

Hyper-Kamiokande

- total target mass: $\sim 1~{
 m Mt}$, fiducial mass $0.54~{
 m Mt}$
- two independent detectors, each devided into 5 compartments
- located Tochibora mine (Kamioka, 500 m.w.e.)

NuExps.tex - July 3, 2008 - 18(29)

Hyper-Kamiokande

- total target mass: $\sim 1 \, {
 m Mt}$, fiducial mass $0.54 \, {
 m Mt}$
- two independent detectors, each devided into 5 compartments
- located Tochibora mine (Kamioka, $500 \mathrm{\,m.w.e.}$)
- PMT coverage: 40%
- T2K long baseline (J-PARC, 290 km)
- atmospheric and super nova neutrinos
- 10 years of construction (starting \sim 2010, if funded)

UNO and MEMPHYS

- both 440 kt fiducial mass
- UNO: probably located in DUSEL, base lines: $\sim 1280 \text{ km}$ (Fermilab) or $\sim 2530 \text{ km}$ (BNL)
- MEMPHYS: located in Frejus (130 km to CERN, beta beam!?)
- alternatives to Hyper-Kamiokande

NuExps.tex - July 3, 2008 - 19(29)

Liquid Scintillator

- detection of secondary particle by scintillation light
- active target material: liquid scintillator, e.g.
 - PC (Pseudocumene = 1,2,4-Trimethylbenzene)
 - PXE (Phenylxylylethane)
- scintillation light detection by PMTs
- proven technology at large target masses
- \circ good efficiency and good energy resolution (6% at $1~{
 m MeV})$
- clean signatures, good background rejection
- almost no angular information
- low energy threshold (few 100 keV, depending on scintillator) important for solar and reactor, but not for accelerator neutrinos
- examples: (Double) Chooz, Borexino, KamLAND

Liquid Scintillator

- detection of secondary particle by scintillation light
- active target material: liquid scintillator, e.g.
 - PC (Pseudocumene = 1,2,4-Trimethylbenzene)
 - PXE (Phenylxylylethane)
- scintillation light detection by PMTs
- proven technology at large target masses
- good efficiency and good energy resolution (6% at $1\,{
 m MeV}$)
- clean signatures, good background rejection
- almost no angular information
- low energy threshold (few 100 keV, depending on scintillator) important for solar and reactor, but not for accelerator neutrinos
- examples: (Double) Chooz, Borexino, KamLAND

Liquid Scintillator

- detection of secondary particle by scintillation light
- active target material: liquid scintillator, e.g.
 - PC (Pseudocumene = 1,2,4-Trimethylbenzene)
 - PXE (Phenylxylylethane)
- scintillation light detection by PMTs
- proven technology at large target masses
- good efficiency and good energy resolution (6% at $1\,{
 m MeV}$)
- clean signatures, good background rejection
- almost no angular information
- low energy threshold (few 100 keV, depending on scintillator) important for solar and reactor, but not for accelerator neutrinos
- examples: (Double) Chooz, Borexino, KamLAND

- target and active area seperated:
 - segmented solid target (iron, lead)
 - active components (e.g. scintillator strips) between target segments
- suitable for "golden channel" of neutrino factories ($u_e \mapsto
 u_{\mu}$):
 - identification of "wrong signed" muons
 - muon charge identification with high purity $(< 10^{-5})$
- but: high density target prevents detection of low-energy neutrinos

- target and active area seperated:
 - segmented solid target (iron, lead)
 - active components (e.g. scintillator strips) between target segments
- suitable for "golden channel" of neutrino factories ($u_e \mapsto
 u_{\mu}$):
 - identification of "wrong signed" muons
 - muon charge identification with high purity ($< 10^{-5})$

but: high density target prevents detection of low-energy neutrinos

- target and active area seperated:
 - segmented solid target (iron, lead)
 - active components (e.g. scintillator strips) between target segments
- suitable for "golden channel" of neutrino factories $(
 u_e \mapsto
 u_{\mu})$:
 - identification of "wrong signed" muons
 - muon charge identification with high purity ($< 10^{-5})$

but: high density target prevents detection of low-energy neutrinos

- known technology: e.g. MINOS uses it successfully
- MINOS has a target mass of $5 \mathrm{\,kt} \; (3 \mathrm{\,kt} \; {
 m fiducial})$
- future experiments will be larger by 1 order of magnitude
- NOvA: 30 kt TCal with liquid scintillator (delayed funding)

NuExps.tex - July 3, 2008 - 22(29)

Liquid Argon Time Projection Chamber

- detection of secondary particle by ionization
- active target material: liquid argon
- TPC: measurement of electron drift, readout wires
- drift distances of some meters possible in liquid argon
- trigger: Fluorescence light detected by PMTs
- low energy threshold, high efficiency
- full 3D reconstruction:
 - high spatial resolution ($\mathcal{O}(1 \text{ cm})$)
 - energy measurement with magnetic field (?)
 - high background rejection
- caveats:
 - technology not proven to work at large scales
 - safety concerns in underground operation (!)

Liquid Argon Time Projection Chamber

- detection of secondary particle by ionization
- active target material: liquid argon
- TPC: measurement of electron drift, readout wires
- drift distances of some meters possible in liquid argon
- trigger: Fluorescence light detected by PMTs
- low energy threshold, high efficiency
- full 3D reconstruction:
 - high spatial resolution ($\mathscr{O}(1\ \mathrm{cm})$)
 - energy measurement with magnetic field (?)
 - high background rejection
- caveats:
 - technology not proven to work at large scales
 - safety concerns in underground operation (!)

Liquid Argon Time Projection Chamber

- detection of secondary particle by ionization
- active target material: liquid argon
- TPC: measurement of electron drift, readout wires
- drift distances of some meters possible in liquid argon
- trigger: Fluorescence light detected by PMTs
- low energy threshold, high efficiency
- full 3D reconstruction:
 - high spatial resolution ($\mathscr{O}(1~{
 m cm})$)
 - energy measurement with magnetic field (?)
 - high background rejection
- caveats:
 - technology not proven to work at large scales
 - safety concerns in underground operation (!)

ICARUS T600

- $\bullet~600~t$ module, consisting of 2 identical 300~t half-modules
- the originally planned T3000 (5xT600) will not be built (safety)

WC LScint TCal LAr-TPC

ICARUS T600

- 600 t module, consisting of 2 identical 300 t half-modules
- the originally planned T3000 (5xT600) will not be built (safety)

Martin Hierholzer

Current and Future Neutrino Experiments

ICARUS T600

- $\bullet~600~t$ module, consisting of 2 identical 300~t half-modules
- the originally planned T3000 (5×T600) will not be built (safety)
- both half modules share the same cryostat
- each half module has two TPCs
- nominal voltage: $75 \mathrm{\,kV} (500 \mathrm{\,V/cm})$
- ullet maximum drift distance and time: $1.5~{
 m m}~/~1~{
 m ms}$
- ullet total active volume: $170~{
 m m}^3$
- ullet total number of wires: $53248~(arnothing\,150~\mu{
 m m})$
- current status: construction at LNGS (Italy)
- Physics opportunity: $u_{\mu}
 ightarrow
 u_{e}$ (CNGS beam)

GLACIER

- 100 kt LAr TPC
- using industrial available tanks (no R&D)
- new readout techniques for very long drift times (e.g. LEM)
- magnetized volume (under study)
- sensitive to CP-phase

NuExps.tex - July 3, 2008 - 25(29)

GLACIER

- 100 kt LAr TPC
- using industrial available tanks (no R&D)
- new readout techniques for very long drift times (e.g. LEM)
- magnetized volume (under study)
- sensitive to CP-phase

NuExps.tex - July 3, 2008 - 25(29)

GLACIER

- 100 kt LAr TPC
- using industrial available tanks (no R&D)
- new readout techniques for very long drift times (e.g. LEM)
- magnetized volume (under study)
- sensitive to CP-phase
- $10 \, {
 m kt}$ prototype with own physics program (proton decay)

NuExps.tex - July 3, 2008 - 25(29)

CP Phase

physics/0411123v2

NuExps.tex - July 3, 2008 - 26(29)

Θ_{13} vs Δm^2_{31}

90% c.l., hep-ph/0204352v2

NuExps.tex – July 3, 2008 – 27(29)

Θ_{13}

90% c.l., hep-ph/0710.4947v2 (international scoping study)

NuExps.tex – July 3, 2008 – 28(29)

Summary

Det. \setminus Src.	(Super) Beam	NuFact	Beta Beam	Reactor
WC	Hyper-K			
	UNO			
	MEMPHYS			
LScint				DblChooz
TCal	MINOS	MIND		
		(golden ch.)		
		mag. ECC		
		(all ch.)		
LAr TPC	ICARUS			
	GLACIER	GLACIER	GLACIER	
	LArTPC@NuMI			

NuExps.tex – July 3, 2008 – 29(29)

Correlation

NuExps.tex – July 3, 2008 – 30(29)

Correlation

$$\begin{split} P(\nu_{\mu} \to \nu_{\mu}) &= 1 - \left[\sin^2 2\theta_{23} - s_{23}^2 \sin^2 2\theta_{13} \cos 2\theta_{23}\right] \sin^2 \left(\frac{\Delta_{23}L}{2}\right) \\ &- \left(\frac{\Delta_{12}L}{2}\right) \left[s_{12}^2 \sin^2 2\theta_{23} + \tilde{J}s_{23}^2 \cos \delta\right] \sin(\Delta_{23}L) \\ &- \left(\frac{\Delta_{12}L}{2}\right)^2 \left[c_{23}^4 \sin^2 2\theta_{12} + s_{12}^2 \sin^2 2\theta_{23} \cos(\Delta_{23}L)\right], \end{split}$$

where $\tilde{J} = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$ and $\Delta_{23} = \Delta m_{23}^2/2E$, $\Delta_{12} = \Delta m_{12}^2/2E$.

NuExps.tex – July 3, 2008 – 31(29)

ICARUS WANF test setup

- 501 LAr TPC module
- high beam energy and modest detector volume: external muon spectrometer
- coincidence with NOMAD DAQ, using NOMAD dipole magnet as spectrometer
- first 3D reconstruction of neutrino events with a LAr TPC

ICARUS WANF test setup

NuExps.tex – July 3, 2008 – 33(29)

ICARUS WANF test setup

NuExps.tex - July 3, 2008 - 33(29)

Martin Hierholzer Current and Future Neutrino Experiments

ICARUS WANF test setup

NuExps.tex – July 3, 2008 – 33(29)

Martin Hierholzer Current and Future Neutrino Experiments