T 32.3:

Topological Track Reconstruction in Liquid Scintillator Neutrino Detectors for MeV Events

Henning Rebber¹

on behalf of

Björn Wonsak¹, Caren Hagner¹, Sebastian Lorenz², David Meyhöfer¹

¹Universität Hamburg, Germany – Institut für Experimentalphysik ²JGU Mainz, Germany – Institut für Physik

Motivation

Topological Reconstruction at Low Energies

- topological reconstruction designed to resolve tracks of high energy particles (O(GeV)), e.g. muons
- low energy (LE) events (O(MeV)), e.g. IBD signal, considered as point-like
- LE: well established methods exist to resolve vertex and energy

... so why do we even care?

- LE events: no clear topology recognizable
- but: contrast can give rise to event discrimination

- LE events: no clear topology recognizable
- but: contrast can give rise to event discrimination

- LE events: no clear topology recognizable
- but: contrast can give rise to event discrimination

- LE events: no clear topology recognizable
- but: **contrast** can give rise to event discrimination

Development of a Discrimination Parameter

- LE: a few thousand photo electrons (PE)
- reconstruction output: number density distribution of photon emissions

- determine maximum voxel V_{max}
- plot average voxel content C over radius R around V_{max}
- build derivative D (25 cm binning)
- \rightarrow expect C(R) to decrease faster for electrons than for positrons

Cut Performance

- simulation of each 1000 positron and electron events (*Geant4*)
- energy:

 $E_{e+} = 2.6 \text{ MeV}, \quad E_{e-} = E_{e+} + 2 \cdot 511 \text{ keV}$

- position: (0,0,10) m from JUNO center
- direction: random
- assumed vertex uncertainty: 10 cm in x, y, z
- topological reconstruction and determination of derivative

- → plot with two populations, just as expected!
- ightarrow distributions show some overlap

... can we do better?

Considering Positronium Lifetime

- before annihilation, e⁺ and e⁻ generally build positronium
- two possible spin states:
 - singlet: **para-positronium** (p-Ps), lifetime $\tau_{pPs} \sim 100$ ps
 - triplet: **ortho-positronium** (o-Ps), lifetime $\tau_{oPs} \sim 140$ ns (in vacuum)
- spin flips cause o-PS lifetime to shorten
- effective τ_{oPs} in liquid scintillator from measurements:
 - τ_{oPs} = (2.97 ± 0.04) ns, ratio > 48%
- not considered in official *Geant4* simulation for JUNO detector
- Delayed photons should blur out reconstruction result even more!
- → for given ratio of e+ events, introduce **artificial PE delay** w.r.t. τ_{oPs} (only for 511keV-daughters)

→ T 9.1 "First Measurements of Lifetime and Formation Probablility of Orthopositronium in the LAB Based Scintillator of JUNO" by M. Schwarz

Topological Reconstruction at Low Energies

w/ ortho positronium

- realistic treatment of o-Ps favors e⁺/e⁻ discrimination
- high signal to noise ratio towards low efficiencies

JUNO

Comparing Different Energies

- cut performance improves strongly towards lower energies
- discrimination potential fades beyond 7.5 MeV

Summary

- topological 'track' reconstruction used on LE events in JUNO
- e⁺/e⁻ discrimination based on contrast in topology
- feasibility successfully demonstrated

ightarrow full potential yet to be determined

Outlook

- short term:
 - detailed analysis of position and energy dependencies
 - use of **multivariate methods** (TMVA)
 - perform cut on **e-/γ samples**
- mid term:
 - compare closely to alternative discrimination techniques, investigate possible gain by combination
 - → AKPIK 1.7 "e + /e Discrimination with Deep Learning Method" by Y. Xu
 - → T 32.8 "Positron and Electron Discrimination with Deep Neural Network Image Recognition with JUNO" by T. Birkenfeld

Summary

- topological 'track' reconstruction used on LE events in JUNO
- e⁺/e⁻ discrimination based on contrast in topology
- feasibility successfully demonstrated

ightarrow full potential yet to be determined

Thank you for your attention!

- short term:
 - detailed analysis of position and energy dependencies
 - use of **multivariate methods** (TMVA)
 - perform cut on **e-/γ samples**
- mid term:
 - compare closely to alternative discrimination techniques, investigate possible gain by combination
 - \rightarrow AKPIK 1.7 "e + /e Discrimination with Deep Learning Method" by Y. Xu
 - → T 32.8 "Positron and Electron Discrimination with Deep Neural Network Image Recognition with JUNO" by T. Birkenfeld

How to reconstruct a track

Assume simple model:

- clearly defined **reference point** and **time**
- p.d.f. for timing uncertainty and scintillation process

\rightarrow spatial p.d.f. for emission point

put together all hits from all PMTs

 \rightarrow get number density distribution of photon emissions

so far: PMT information usedindependentlybut: emissions are correlated!

 \rightarrow use result as prior information for iterative process

Henning Rebber

Backup

- ~53 km distance to two nuclear power plants (35.8 GW P_{th})
- 20 kt liquid scintillator
- acrylic tank: Ø 35.4 m
 (PMT sphere: Ø 40.1 m)
- ~18,000 20" PMTs,
 ~25,000 3" PMTs
 → 77% coverage
- $QE \approx 30\%$
- coils to shield EMF

 $\rightarrow \Delta E/E = 3\%/\sqrt{E(\text{MeV})}$

 energy scale uncertainty < 1%

The JUNO Experiment

Requirements for measuring MO:

- position with advantageous
 L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty

