Diskriminierung von NC π⁰ Ereignissen im Flüssigszintillatordetektor LENA

Sebastian Lorenz

Universität Hamburg Institut für Experimentalphysik

DPG-Vortrag Göttingen, 2. März 2012

Inhaltsübersicht

- LENA-Detektor
- π^0 -Untergrund für Suche nach $\nu_{\mu} \rightarrow \nu_{e}$ Oszillation
- Multivariate Analyse mit Boosted
 Decision Trees zur π⁰-Diskriminierung
- Erste Ergebnisse

LENA-Detektor

- LENA: Low Energy Neutrino Astronomy
- 50 kt Flüssigszintillatordetektor
- eine Detektor-Option in der europäischen Designstudie LAGUNA-LBNO
- Forschungsprogramm:
 - Niederenergie-Neutrinos
 - Protonzerfall
 - Long-Baseline Oszillationsexperiment (Neutrinostrahl)
- möglicher Standort: Pyhäsalmi-Mine (Finnland)
 - Abschirmung vor kosmischer Strahlung: 4000 mwe

LENA-Detektor

- zylindrischer Betontank
 [h_{innen}=100 m, r_{innen}=16 m]
- aktive Targetmasse: 50 kt
- Licht-Detektion durch PMTs mit Winston-Cones
 [30% optische Abdeckung]
 - 29,6k 12" PMTs
- äußeres Wasservolumen als Myon-Veto und Abschirmung gegen Strahlung

LBNO mit LENA

Baseline CERN – Pyhäsalmi Distanz: ~2300 km 1. Oszillationsmaximum: ~4,5 GeV gut geeignet für Messungen bzgl. Θ₁₃, δ_{CP} und Massenhierarchie durch ν_u → ν_e Oszillation

 Sensitivität bzgl. der Mischungsparameter auch von Detektor-Performance abhängig

LBNO mit LENA

Baseline CERN – Pyhäsalmi Distanz: ~2300 km 1. Oszillationsmaximum: ~4,5 GeV gut geeignet für Messungen bzgl. Θ₁₃, δ_{CP} und Massenhierarchie durch ν_µ → ν_e Oszillation

 Sensitivität bzgl. der Mischungsparameter auch von Detektor-Performance abhängig

Flüssigszintillatordetektoren wurde Fähigkeit abgesprochen geladene Teilchen auf Grundlage von isotropem Szintillationslicht zu tracken / identifizieren

→ sie wurden noch nie als dedizierte Ferndetektoren in LBNO-Experimenten verwendet

Ereignisrekonstruktion in Flüssigszintillator

- Licht wird im Szintillator isotrop emittiert
- bei längeren Teilchentracks ist die Lichtemission ausgedehnt
- Ankunftszeiten der ersten Photonen bietet Möglichkeiten zur Ereignisrekonstruktion

Abbildung von D. Hellgartner

π^0 -Untergrund

π⁰S

- entstehen u.a. durch NC Neutrino-Interaktionen mit einem Nukleon (resonant) oder einem ganzen Kern (kohärent)
- zerfallen nach $\tau_{\pi} \approx 8 \cdot 10^{-17}$ s bevorzugt in $\pi^0 \rightarrow \gamma + \gamma$ (98,8% BR)
- stark asymmetrische Energieverteilung oder kleine Zwischenwinkel bei den γs durch relativistischen Boost möglich
- "EM-Schauer" von e⁻ und γ schwer zu unterscheiden!

π^0 -Untergrund

π⁰-Diskriminierung

- Multivariate Analyse (MVA) mit Boosted Decision
 Trees (BDTs) zur Klassifizierung der Ereignisse als e⁻ (Signal) oder π⁰ (Untergrund)
 - 1)Konstruktion von Ereignis-Variablen auf Grundlage der Verteilung der Ladung über die PMTs / TOFkorrigierten Ankunftszeiten der ersten Photonen

π^0 -Diskriminierung

- Multivariate Analyse (MVA) mit Boosted Decision
 Trees (BDTs) zur Klassifizierung der Ereignisse als e⁻ (Signal) oder π⁰ (Untergrund)
 - 1)Konstruktion von Ereignis-Variablen auf Grundlage der Verteilung der Ladung über die PMTs / TOFkorrigierten Ankunftszeiten der ersten Photonen
 - 2) Training & Test eines Klassifikators mit MC-Daten
 - GEANT4 Detektorsimulation
 - ~210k e⁻ & ~210k π^0 im Zentrum des Detektors mit horizontalem Impuls direkt simuliert
 - flaches Spektrum der deponierten Energie $E_{dep} \in [135 \text{ MeV}, 1000 \text{ MeV}]$

Ereignis-Variablen für MVA

Mittlere TOF-korrigierte Pulsformen von 100 π^0 & e⁻ Ereignissen mit 500 MeV deponierter Energie

 Insgesamt 9 Ereignis-Variablen, u.a.

- rekonstruierte Energie
- 5 Variablen aus TOFkorrigierter Pulsform der ersten Photonen an den PMTs

Ereignis-Variablen für MVA

- Verteilung der Pulsbreite und der Pulsabfallszeit für 20k e⁻ & und 20k π^0 mit 500 MeV deponierter Energie

MVA mit Boosted Decision Trees

MVA mit Boosted Decision Trees

	Signal-Effizienz					
	30%		10%		1%	
	Untergrund		Untergrund		Untergrund	
	(Test)	(Training)	(Test)	(Training)	(Test)	(Training)
Trees: 25	85,5%	85,6%	49,6%	50,0%	8,8%	8,8%
Tiefe : 2	+/- 1,1%	+/- 1,0%	+/- 1,2%	+/- 1,3%	+/- 1,0%	+/- 1,0%
Trees: 25	87,9%	87,8%	53,5%	53,7%	10,2%	10,2%
Tiefe : 3	+/- 0,9%	+/- 0,8%	+/- 1,3%	+/- 1,5%	+/- 0,9%	+/- 0,9%
Trees: 400	91,9%	92,0%	59,3%	59,6%	11,3%	11,6%
Tiefe : 2	+/- 0,5%	+/- 0,5%	+/- 1,0%	+/- 1,1%	+/- 0,5%	+/- 0,7%
Trees: 400	94,1%	94,3%	65,3%	65,8%	14,2%	15,2%
Tiefe : 3	+/- 0,2%	+/- 0,3%	+/- 0,4%	+/- 0,6%	+/- 0,6%	+/- 0,3%

Erstes Ergebnis (400 Trees der Tiefe 2):

(91,9 +/- 0,5)% Sig.-Eff. @ 30% Untergrund (59,3 +/- 1,0)% Sig.-Eff. @ 10% Untergrund (11,3 +/- 0,5)% Sig.-Eff. @ 1% Untergrund

Zusammenfassung & Ausblick

- LENA: 50 kt Flüssigszintillatordetektor
- LBNO-Experiment zur Suche nach $\nu_{\mu} \rightarrow \nu_{e}$ Oszillation
 - Unterscheidung von π^0 und e⁻ notwendig
- π⁰-Diskriminierung: erste Ergebnisse aus multivariater Analyse mit Boosted Decision Trees für vereinfachte MC-Ereignisse bis 1 GeV
- Zukunft: realistischere Analyse-Bedingungen (Neutrino-Vertex, höhere Energien, ...) & Optimierung der Boosted Decision Trees

Vielen Dank für die Aufmerksamkeit!

Backup Folien

TOF-Korrektur

Abbildung von D. Hellgartner

Boosted Decision Trees

