Neutrino Physics with THEIA

Presented by

Björn Wonsak

on behalf of the THEIA collaboration

RAL Seminar, 4th November 2020

Theia (Θεία): Greek Titan goddess of the radiant blue sky, sight, precious stones and precious metals.

Introduction

Concept and technologies (R&D)

- Physics program
 - Long Baseline
 - Low energy astroparticle physics

Goals of Neutrino Physics

entire spectrum

[a.u.]

0.4

0.2

0

-3

rate

Answer fundamental questions about neutrinos:

amplitude 0.8

decay :

elative

02

t

6 10 14

electron energy E [keV]

2

Neutrino Mixing: (including sterile Neutrinos) Oscillation

Neutrino Mass: Endpoint of beta-decay

Majorana or Dirac: Neutrinoless doublebetadecay $(0\nu\beta\beta)$

Lepton number violating process

Primary experimental Ansatz

CP-violating phases

region close to ß end point

only 2 x 10⁻¹³ of all

E - En [eV]

 $m(v_e) = 0 eV$

-1

 $m(v_e) = 1 eV$

-2

Goals of Neutrino Physics

Use neutrinos as a probe or messenger particle:

- Cosmic Neutrino Background
 - Solar Neutrinos
 - Geo Neutrinos
 - Reactor Neutrinos
- Supernova Neutrinos
- Diffuse Super Nova Neutrino **Background** (DSNB)
- Atmospheric Neutrinos
- 10²⁰ eV
 - Astrophysical Neutrinos

The Neutrino Revolution: Examples

"I have done a terrible thing, I have postulated a particle that cannot be detected" Wolfgang Pauli (1930)

75°

30 **ICECUBE:** 15 0° A sky full of -15 **Neutrinos** -30-45 -60° -75 2 300 400 200 **Bor<u>exino:</u>** 10³ Events / 5N_h **Probes the core** 10² of the Sun

Neutrino energies up to PeV

"New all-sky search reveals potential neutrino sources"

M. G. Aartsen et al. Physical Review Letters 124, 051103 (2020)

Two recent highlights!

Neutrino energy (MeV)

"First Direct Experimental Evidence of CNO neutrinos"

> Agostini, M. et al., June 2020, arXiv:2006.15115

Rich Experimental Landscape

Not a complete picture!

Some Major Contributors

Large homogeneous optical detectors

- Low threshold
- Fast timing for background reduction
- Re-configurable as the field progresses

(Changing or doping the liquid, inserting sub-volumes, using new instrumentation, adding a neutrino source)

Hyper-Kamiokande (starting operation in 2027)

Two Detector Types

Water Cherenkov

- Excellent Transparency
 - large size
- Cheap
- Directionality
- Particle ID
- Potential for large Isotopic Loading

Liquid Scintillator

- High light yield
- Low threshold
- Good energy resolution
- Can be radiologically very clean

Examples of Chernkov-Rings in Super-Kamiokande

Muon

Electron

Multi-ring

Two Detector Types

Water Cherenkov

- Excellent Transparency
 - large size
- Cheap
- Directionality
- Particle ID
- Potential for large Isotopic Loading

Liquid Scintillator

- High light yield
- Low threshold
- Good energy resolution
- Can be radiologically very clean

Examples of Chernkov-Rings in Super-Kamiokande

Muon

Multi-ring

The Theia Project

Novel target medium: (Wb)LS

Novel light sensors: LAPPDs, dichroicons

Large volume detector able to **exploit both Cherenkov+Scintillation** signals

M. Askins, et al., Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501

Enhanced sensitivity to broad physics program:

- Long baseline oscillations
- Solar neutrinos
- Supernova neutrinos
- Diffuse SN neutrinos
- Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

Novel reconstruction methods

Björn Wonsak

Key Aspect

- Separating Cherenkov & Scintillation light:
 - Access information from both light species
 - Cherenkov/Scintillation ratio (C/S-ratio)

\rightarrow Enhanced particle discrimination

photons for different particles in LAB

THEIA:

More than just the sum of a Cherenkov & a liquid scintillator detector!

How to Build such a Hybrid Detector?

In principle I could take pure liquid scintillator

- > 3% of light emitted is Cherenkov-light
 - \rightarrow Hard to see rings in scintillation background

How to Improve Relative Cherenkov Yield?

Reduce Rayleigh scattering

- New transparent solvent, e.g. LAB ($\lambda > 20m$)
- Dilution of solvent:
 - Water-based LS
 - Oil-diluted LS (LSND, ...)

Reduce fluor concentration

- Impacts scintillation yield
- Slows down scintillation
 - \rightarrow Helps separation (see later)

How to Improve Relative Cherenkov Yield?

Reduce Rayleigh scattering

- New transparent solvent, e.g. LAB ($\lambda > 20m$)
- Dilution of solvent:
 - Water-based LS

Reduce fluor concentration

- Impacts scintillation yield
- Slows down scintillation

 \rightarrow Helps separation (see later)

Water-based Liquid Scintillator (WbLS)

- Idea: Use a surfactant to generate mycels with oil inside
 - Successful produced at BNL and JGU Mainz
 - BNL already working on production of larger samples
 - Nanofiltration developed at UC Davis
 - Can be loaded with many elements (Li, B, Ca, Zr, In, Te, Xe, Pb, Nd, Sm, Ge, Yb)

WbLS mycels (nm-scale)

(UC Davis)

Ton-scale production facility (at BNL)

Cherenkov-/Scintillation Light Separation

3 signatures to separate Cherenkov-Light

Timing

"instantaneous chertons" vs. delayed "scintons" → ns resolution or better

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

Courtesy to M. Wurm for this plots!

Time Based Separation

Large Area Picosecond Photon Detectors (LAPPDs)

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry
- Ultrafast timing ~65ps
- Spatial resolution <1cm
- Commercial production by Incom, Ltd.

See NIM A 814, 19-32 (2016); NIM A 795, 1-11 (2015); NIM A 732, 392-296 (2013); https://psec.uchicago.edu/; A. V. Lyashenko et al., Nucl.Instrum.Meth.A 958 (2020) 162834, arXiv:1909.10399

1000

800 mm

600

Ring Based (Angular) Separation

Need high granularity

- \rightarrow Photosensors must be
 - Cheap
 - Efficient
 - Reasonable fast

• HQE 20" PMTs (Efficient & affordable)

 Modular PMTs (Good compromise of everything)

Water-Cherenkov Test Beam Experiment

 SiPM + active light guide (Very efficient + increasing affordability)

Wavelength Based Separation

CHErenkov Scintillation Separation (CHESS)

- Cosmic muon ring-imaging experiment
- Images Cherenkov rings in Q and T on fast PMT-array
- Allows charge and time based separation
- Results:
 - Ring and timing pattern clearly visible
 - WbLS faster than pure LAB

WbLS	1%	5%	10%	LAB + 2g/I PPO 5.21 ± 0.5*	
τ ₁ [ns]	2.25 ± 0.15	2.35 ± 0.11	2.70 ± 0.16		
τ ₂ [ns]	15.1 ± 7.5	23.2 ± 3.3	27.1 ± 4.2	16.4 ± 0.6*	
R	0.96 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	0.78 ± 0.01*	
L.Y. [photon/MeV]	234 ± 30	770 ± 72	1,357 ± 125	11,076 ± 1004	

Eur. Phys. Jour. C 80, 867 (2020), arXiv:2006.00173

Derived first data-driven MC model for WbLS !

Advanced Computing & Reconstruction Methods

- Reconstruction methods have advanced greatly (pulse-shape analysis, machine learning, topological reconstruction)
- Shower identification along tracks possible (dE/dx accessible)
- Cherenkov-light could even revel the two-prong nature of $0\nu\beta\beta$
- Discriminating point-like from non-point like events possible (with enough light & good enough timing)

Particle Identification at MeV Energies

- Data-set 1: No TTS, perfect vertex, no DCR
- Data-set 2: Added TTS and realistic vertex
- **Data-set 3:** Added Dark Count Rate (DCR)

see also BW et et al., doi:10.1142/9789811204296_0028

Gap between data-set 1 and 2 indicates huge potential of good TTS (good TTS will also affect the vertex resolution)

L. Ludhova et al. ArXiv:2007.02687

The THEIA Detector

Detector specifications:

- Mass: 25-100 kt (physics and location)
- **Dimensions:** ~ (50m)³ (WbLS transparency)
- Photosensors: Mix of conventional PMTs (light collection) and LAPPDs (timing)
- Location: Deep lab with neutrino beam (Homestake, Pyhäsalmi, Korean sites, ...?)
- Isotope loading: Gd, Te, Li, ... (physics, later stage)

 \rightarrow Very flexible

→ Broad physics program

Concept paper: arXiv:1409.5864

White paper: M. Askins et al., Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501

Future Long-Baseline Neutrino Experiments

- THEIA would need a beam to do longbaseline physics
- Two upcoming large scale projects:
 - Hyper-Kamiokande (Hyper-K/HK) & DUNE

Hyper-K

260 kton Water, starting operation in 2027

3-4 x 10 kton liquid Argon, beam start 2029

DUNE

Long Baseline Neutrino Facility (LBNF)

SURF (Sanford Underground Research Facility):

- Famous for Homestake experiment
- 1300 km distance to Fermilab
 → large matter effects
- Home of DUNE (4x10kt LAr-detector)
- -~1480 m deep (2300 mwe)
 - \rightarrow muon flux only ~10% of LNGS

Theia and the 4th LBNF Cavern

Detector specifications:

Total mass: 25 kt of WbLS

Fiducial mass: 17-20 kt

Photosensors:

- 22,500 10" PMTs (high QE) \rightarrow 25% coverage
- 700 8" LAPPDs \rightarrow 3% coverage
 - \rightarrow equals the current photon collection of SK!
 - \rightarrow upgrade for later phases (solar, $0\nu\beta\beta$)

```
Background level: ~10<sup>-15</sup> g/g in <sup>238</sup>U, <sup>232</sup>Th, <sup>40</sup>K
(Borexino: ~10<sup>-17</sup> - 10<sup>-18</sup> g/g)
```


THEIA25: Stage Approach

Staged Approach

- Phase 1 Long-baseline neutrinos (LBNF) with "thin" WbLS (1-10%)
- Phase 2 Low-energy neutrino observation with "oily" LS
- Phase 3 multi-ton scale 0vββ search with loaded LS in suspended vessel and added photocoverage

Courtesy to M. Wurm for this slide!

Physics Goals

- Long-Baseline Oscillations
- Proton decay $\rightarrow K^+ \nu / \pi^0 e^+$
- Supernova neutrinos
- Diffuse SN neutrinos
- Solar neutrinos
- Geoneutrinos
- 0νββ search on <10meV scale

Neutrino Oscillation Sensitivity of THEIA25

• **Key:** Rejecting NC background $(v_{\mu} + X \rightarrow v_{\mu} + X + \pi_0; \pi_0 \rightarrow 2\gamma)$

CP Violation Sensitivity

- SK & HK improved reconstruction methods a lot (using Ring imaging)
- Assumed same efficiencies (ignoring additional benefit expected from WbLS)

Mass Ordering Sensitivity

THEIA25 equivalent to 1 DUNE module in terms of sensitivity!

Added Value for LBNF (δ_{cP}) Program

Additional statistics

• ~1.7:1 in mass for WbLS : LAr

Complementary systematics

• e.g. cross-sections (simpler nuclei)

Hadronic recoils/neutron tagging

- \rightarrow reduces systematics of energy reco
- \rightarrow neutrino/antineutrino discrimination

In the end DUNE will be dominated by systematics

Adding different technologies and a different target will be more important than increased statistics!

Added Value for LBNF (δ_{cP}) Program

Additional statistics

• ~1.7:1 in mass for WbLS : LAr

Complementary systematics

e.g. cross-sections (simpler nuclei)

Hadronic recoils/neutron tagging

- \rightarrow reduces systematics of energy reco
- \rightarrow neutrino/antineutrino discrimination

Improved energy resolution for low energies (2nd oscillation maximum)

- Fast timing:
 - v v energy selection using initial π/K time-of-flight difference

Using Arrival Times at Far Detector

- Low energy Kaons and Pions are slow
 → Neutrinos from their decay arrive later
- Also results in different flavor content for different time slices
- Both helps to disentangle systematics (flux, cross section, reco efficiencies)

Arrival times and energy spectra for the FHC* configuration of the LBNF beam at DUNE

*FHC forward horn current

Low Energy Astrophysics with Neutrinos

Solar Neutrinos from H fusion in solar interior

Supernova Neutrinos from cooling of proto neutron star within the Milky Way

Statistics are often more important than systematics

 \rightarrow Size does matter!

 \rightarrow Assuming 50 kton (mostly) detector in the following

Diffuse Supernova Neutrinos from core-collapse Supernovae throughout the Universe

Geoneutrinos Natural radioactivity of Earth crust/mantle

04/11/20

Björn Wonsak

Why Solar Neutrinos?

• Main goals:

 Distinguish high- and low metallicity solar models

 \rightarrow Accurately measure CNO flux

Test predictions MSW-Oscillations

→ Look at transition region between vacuum and matter dominated oscillations

Precision test of solar models

 (Need to understand the Sun, if we want to understand other stars)

Solar Neutrinos with THEIA

Large statistic and low background
 → High precision on neutrino fluxes

Li-loading makes CC-channel accessible

 ${}^{7}Li + \nu_e \rightarrow {}^{7}Be + e^{-}$ (Q = 862 keV)

- Sharply peaked differential cross-section
 - \rightarrow Almost all incident energy transferred to the scattered electron.
- Only two transitions possible to
 - ground state of ⁷Be
 - first excited state of ⁷Be (430 keV)
 - \rightarrow High precision possible on Ev by tagging excited state decay γ

Signal	Normalization sen	sitivity (%)			
$^{8}\mathrm{B} \nu$	0.4				
$^{7}\mathrm{Be} \ \nu$	0.4				
pep ν	3.8				
CNO ν	5.3				
$^{210}\mathrm{Bi}$	0.1	assuming 5% WbLS,			
^{11}C	11.5	90% coverage,			
$^{85}\mathrm{Kr}$	10.5	25% angular resolution			
$^{40}\mathrm{K}$	0.04				
$^{39}\mathrm{Ar}/^{210}\mathrm{Po}$	21.9				
238 U chain	0.02				
²³² Th chain	0.05				

Helping Solar Neutrinos with Directionality

- Used MC model for WbLS derived from CHESS data to study reconstruction of direction (+ position & energy)
 - \rightarrow Fast timing key for high scintillator fraction
- Solar neutrino do elastic scattering \rightarrow Directionality for background rejection

B. Land, et al., arXiv:2007.14999, July 2020

Supernova Neutrinos in THEIA

DSNB with THEIA

- Combines neutrino signal of past SN
- Encoded information:
 - Star formation rate
 - Average core-collapse neutrino spectrum
- Advantage THEIA:
 - Pulse-shape discrimination, ring-counting, C/S-ratio
 - $\rightarrow 5\sigma$ conceivable after 5 yr

M. Askins, et al., Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501

see also J. Sawatzki, et al., arXiv::2007.14705, July 2020

DSNB with **THEIA**

Combines neutrino signal of past SN

Encoded information:

- Star formation rate
- Average core-collapse neutrino spectrum

Advantage THEIA:

- Pulse-shape discrimination, ring-counting, C/S-ratio
 - $\rightarrow 5\sigma$ conceivable after 5 yr

17kt fiducial mass

Geo-Neutrinos with THEIA

- Thousands of Geo-neutrino events per year
 - \rightarrow Precise measurement of Th & U components in spectrum (to test geophysical models)
- Expected rate would be 2σ greater than the KamLAND rate after 1 year (at SURF)
 - \rightarrow First evidence for surface variation of flux possible

S.M. Usman, et al., Scientific Rep. 5, 13945 (2015)

M. Askins, et al., Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501

The Neutrino-less Double Beta Decay ($0\nu\beta\beta$)

- Discovery would proof Majorana character of neutrinos
- Only possible for isotopes that can undergo normal double beta decay

The rate of this process depends on the **effective mass (m_{ee})** of the **electron** neutrino

$$\left| m_{ee} \right| = \left| \sum U_{ei}^2 m_i \right|$$

also denoted at $m_{_{\beta\beta}}$

- Signature: Peak at Q-value of decay
- Key:
 - Good energy resolution
 - Extremely low background

$\mathbf{0}\nu\beta\beta$ in THEIA

- Very large isotope mass deployed in liquid scintillator
- 8 m radius LAB-PPO filled ballon
- Loading ^{nat}Te or ^{enr}Xe (or ¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd)
- Backgrounds due to ⁸B solar neutrinos, $2\nu\beta\beta$, LS contamination and detector materials

After 10 years, THEIA100

Machine Learning Example: C-10

- Studied in A. Li et al. , arXiv:1812.02906
 Using a Convolutional Neural Network (CNN)
 In KamLAND-like detector (~1ns σ_T, 23% QE, 19.6% coverage)
 → 62% bkg reduction at 90% signal efficiency 82% with ~3.4x light collection (36.2% QE, 42% coverage)
 98% for perfect light collection (time delay of ortho-positronium decay not used)
- ¹⁰C is background (bkg) for solar-v and $0\nu\beta\beta$
- I see similar potential for ¹³⁰I ($0\nu\beta\beta$ bkg)

Has not been included in current study! (used only three-fold coincidence)

Nucleon Decay with THEIA

- THEIA advantage: low threshold + low background
- Triple coincidence: $p \rightarrow v K^+ \rightarrow Kaon decay \rightarrow decay of decay product$
- Invisible decay of oxygen nucleus:

 $n \rightarrow 3\nu \rightarrow$ One 6.18 MeV γ from excited nucleus

Complementary to competitors (DUNE & HyperK) Leading in invisible decay

Using Other Experiments as R&D Testbeds

THEIA Interest Group

Summary/Conclusions

THEIA:

- Combining advantages of Water-Cherenkov & Liquids Scintillator detectors
- Using new technologies (WbLS, LAPPDs, Dichroicons, advanced reconstruction, ...)
 - \rightarrow Complementary to existing and upcoming large-scale projects

• Physics case:

- Enhanced sensitivity to a broad physics program (long-baseline physics, solar neutrinos, Supernova neutrinos, DSNB, 0vββ)
- THEIA25 makes an excellent match for the 3 DUNE modules

Surrounded by a large R&D program

(Advanced reconstruction, liquid & sensor development, demonstrators, ...)

Large community interest

Please have a look at our White Paper: M. Askins, et al., Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501

Backup slides

Advantages of WbLS at MeV Energies

Water Cherenkov

High transparency

- → enhanced light collection
- Directionality from cone reco
- Particle ID from ring counting
- Enhanced metal loading

Combined: Particle ID based on **Cherenkov/scintillation (C/S) ratio** (p, α below Č threshold)

Organic scintillator mycels

- Low (sub-Cherenkov) threshold
- Increased light yield
- Enhanced vertex reconstruction
- Particle ID by pulse shape
- Enhanced cleanliness

04/11/20

Björn Wonsak

Cherenkov-Light Separation by Wavelength

ã

Using dichroic filter

(transmitting above or below a certain threshold, reflecting the rest)

Optimal Cut for LAB-PPO (2g/I): 450 nm Full description in T. Kaptanoglu et al., JINST 14 (2019) no.05, T050

Cherenkov-Light Separation by Wavelength

• Using dichroic filter

(transmitting above or below a certain threshold, reflecting the rest)

- Optimal cut for LAB-PPO (2g/l): 450 nm
 Full description in T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001
- Studying application as light concentrator (U. Penn.)

T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

Theia for $\mathbf{0}\nu\beta\beta$

Assumption used for sensitivity study

- Detector mass 50 ktons (20 m fiducial radius, 40 m high)
- Balloon with 8m radius (7m fiducial radius)
 - Filled with LAB + PPO (2g/I)
- Two loading schemes:
 - 3% enriched Xenon (89.5% in 136 Xe)
 - 5% natural Tellurium (34.1% in 130 Te)
- Outside balloon: WBLS with 10% LAB-PPO
- Overburden: 4300 m.w.e. (Homestake)
- 90% PMT coverage

 \rightarrow ~1200 γ /MeV $\rightarrow \Delta E$ ~3% at 1MeV (conservative underestimation for Xe light yield)

Theia for $\mathbf{0}\nu\beta\beta$

- Detector mass 50 ktons (20 m fiducial radius, 40 m high)
- Balloon with 8m radius (7m fiducial radius)
 - Filled with LAB + PPO (2a/l)
- Reason for LAB-PPO:

High light yield \rightarrow good energy resolution (crucial for $0\nu\beta\beta$)

+ fast light sensors still allow Cherenkov-Separation (shown with CHESS)

• 90% PMT coverage

 \rightarrow ~1200 γ /MeV $\rightarrow \Delta E$ ~3% at 1MeV

(conservative underestimation for Xe light yield)

60m

Background (bkg) Assumptions

- Assuming Borexino phase II/KamLand-like radioactive contamination (LS/Balloon)
- Delayed Bi-Po-coincidences with 99.9% bkg reduction (Bi-214)
- Careful control of cosmogenic activiation of loading material (→ negligible bkg)
- Three-fold coincidence technique with 92.5% bkg reduction (C-10, efficiency from Borexino)
- Fiducial volume cut for external sources + additional 50% bkg reduction
- Activation by CC-interactions of solar neutrinos on loading material (I-130 & Cs-136)
- PID used to remove 50% of B-8 bkg (see R.Jiang and A.Elagin, arXiv:1902.06912)

Source	Target level	Expected events/y	Events	/ROI·y	ROI: $-\sigma/2 \rightarrow 2\sigma$
			5% ^{<i>nat</i>} Te	$3\% \ ^{enr}$ Xe	
Balloon ¹⁰ C		500	2.5	2.5	
8 B neutrinos (normalization from [44])		2950	13.8	13.8	
130 I (Te target)		155 (30 from ^{8}B)	8.3	-	
136 Cs (^{enr} Xe target)		478 (68 from ^{8}B)	-	0.06	
$2\nu\beta\beta$ (Te target, T _{1/2} from [45])		1.2×10^{8}	8.0	-	
$2\nu\beta\beta$ (enrXe target, T _{1/2} from [46, 47])		7.1×10^{7}	-	3.8	
Liquid scintillator	$^{214}{ m Bi:}~10^{-17}~{ m g}_U/{ m g}$	7300	0.4	0.4	
	²⁰⁸ Tl: 10^{-17} g _{Th} /g	870	-	-	
Nylon Vessel [48, 49]	²¹⁴ Bi: $< 1.1 \times 10^{-12} \text{ g}_U/\text{g}$	$1.2{ imes}10^5$	2.4	2.7	
	²⁰⁸ Tl: $< 1.6 \times 10^{-12} \text{ g}_{Th}/\text{g}$	2.1×10^4	0.03	0.01	

Total bkg-index : in $evts/(t \cdot y)$

1.1 (Te) 0.5 (Xe)

Theia White Paper, to be published soon (Courtesy to V. Lozza, A. Mastbaum & L. Winslow)

(per ton of Te-130/Xe-136 in full volume)

Isotope Loading of Liquid Scintllator

Particle ID with Ring-Imaging

Neutrino Beam Picture

Neutrino Teleskope at Yemilab (Korea)

Seon-Hee Seo, arXiv:1903.05368v1, Mar 2019

Yemilab: Under construction

New underground lab in Korea

Will have space for a 50 kton WbLS detector

Korean Neutrino Observatory (KNO): Proposed

Hyper-K 2nd detector in Korea, a.k.a. T2HKK

260 kiloton water Cherenkov detector

J-PARC

Solar Neutrinos at Yemilab

FIG. 6: Solar neutrino survival probability vs. neutrino energy in MeV. Squares with error bars represent solar neutrino fluxes from current measurements by Borexino, SNO and SK. A cyan band represents expected solar neutrino survival probability from standard solar neutrino model with MSW effect. With 4~5 kiloton WbLS detector at Yemilab it might be possible to reduce

the uncertainties to the level of the expected one (cyan band).

Improving Liquid Properties

Development of scintillating liquids

- WBLS (Brookhaven NL, JGU Mainz, TU Munich)
- Isotope loading (BNL, MIT) (Li,B,Ca,Zr,In,Te,Xe,Pb,Nd,Sm,Ge,Yb)
- Oil-diluted LS (JGU Mainz)
- Characterization (Brookhaven NL, JGU Mainz, TU Munich, ...)
 - Optical properties (Emission, attenuation, ..)
 - Timing properties (Time spectrum, ortho-positronium, ...)
- Filtering methods (Attenuation, radiopurity)
 - Nanofiltration (UC Davis)
 - JUNO-test facility achieved A.L > 23 m (LAB + PPO + bis-MSB)

Nanocrystal-Doped Liquid Scintillator arXiv:1908.03564

Goals at GeV Energies

- Non-ML methods: Full topological reconstruction can reveal many details
- But: Very computing intensive & lack robustness in some cases
- Question: Can ML do better?

Topological

Outlook: First Results Voxel Reconstruction

Using L1-regularization in loss function

Red: MC Truth Blue: Network output

Result of homogeneous network

Result after propagation layers

Result heterogeneous network (after training)

Neutrino Oscillations (Simplified)

Which flavour we measure depends on phase difference!

Neutrino Oscillations (Simplified)

Parametrisation of Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

In addition: If neutrinos are Majorana particles

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix}$$

2 CP-violating Majorana phases α_1, α_2

Not visible in Oscillations

Mass Ordering

