

Indirekte Messung der Neutrinomassendifferenz Δm_{23}^2 bei OPERA

(inclusive v_{μ} -disappearance)

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung

03.03.2008, T. Ferber

Übersicht

- Neutrinooszillation
- Was ist "inclusive v_{u} -disappearance"?
- Ereignisklassifikation mit OPERA
 - "eye-scan"
 - Separationsmöglichkeiten
- Zusammenfassung

UH

• Flavoreigenzustand $v_{r} \neq$ Masseneigenzustand v_{i}

$$|v_{\alpha}\rangle = \sum_{i} U_{\alpha i} |v_{i}\rangle$$

• Löse Schrödinger-GI. für Propagatorterm

$$i\frac{\partial}{\partial t}|v_i(T_i)\rangle = m_i|v_i(T_i)\rangle \longrightarrow |v_i(T_i)\rangle = e^{-im_iT_i}|v_i(0)\rangle$$

UH

ΪÏ

Oszillationswahrscheinlichkeit:

$$P(v_{\alpha} \rightarrow v_{\beta}) = |Amp|^{2} = \left(\sum_{i} U_{\alpha i} e^{-im_{i}^{2} \frac{L}{2E_{i}}} U_{\beta i}^{*}\right)^{2} = \delta_{\alpha \beta} - 4\sum_{i>j} \Re \left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j} \sin^{2} \left(\Delta m_{i j}^{2} \frac{L}{4E}\right)\right) + 2\sum_{i>j} \Im \left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j} \sin \left(\Delta m_{i j}^{2} \frac{L}{2E}\right)\right)$$

• PMNS-Parametrisierung (3 reelle Winkel, 1 komplexe Phase), wenn $\Delta m_{12}^{2} < < \Delta m_{23}^{2}$, θ_{13} klein:

2-Flavour Näherung
$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \approx \sin^{2}(2\theta_{23})\sin^{2}(\frac{1.27(\Delta m_{23}^{2})L}{E_{\nu}})$$

Linkm, Ein GeV

03.03.2008, T. Ferber Indirekte Messung der Neutrinomassendifferenz

klassische v_{μ} -disappearance

$$P(v_{\mu} \rightarrow v_{\tau}) \approx \sin^2(2\theta_{23})\sin^2(\frac{1.27(\Delta m_{23}^2)L}{E_v})$$

MINOS-Experiment (NuMI)

- Nahdetektor (1-2 km entfernt)
- Ferndetektor (735km entfernt)
- Vergleiche v_µ-CC-Rate im
 Nahdetektor (keine Oszillation) und
 Ferndetektor (Oszillation, "fehlende

ν_µ")

inclusive v_{μ} -disappearance

OPERA-Experiment (CNGS)

- kein Nahdetektor!
- Ferndetektor (732km entfernt)
- primäres Ziel von OPERA:

 v_{τ} -appearance

- klassische v_{μ} -disappearance Suche bei OPERA unmöglich!
- $_{-}$ inclusive v_u-disappearance: CC/NC-Verhältnis im Ferndetektor

vereinfachte inclusive v_"-disappearance

- Annahme: reiner v_{μ} -Strahl ohne Kontamination
- nur Informationen aus Elektronikdetektoren
 - Target Tracker (Plastik-Szintillatoren)
 - Resistive Plate Chambers
 - Precision Tracker (Driftröhren) und XPC (crossed-RPC)
- nur zwei Eventklassen: "NC-like" und "CC-like"
 - "CC-like": Muon im Endzustand
 - "NC-like": kein Muon im Endzustand

• charged current (CC): W[±]-Austausch $v + Pb \rightarrow l^- + X$

• neutral current (NC): Z⁰-Austausch $\nu + Pb \rightarrow \nu + X$ $\sigma_{\nu_e}^{NC} = \sigma_{\nu_{\mu}}^{NC} = \sigma_{\nu_{\tau}}^{NC}$

$$N = A \cdot \int \Phi \cdot \sigma \cdot \epsilon \cdot P \, dE$$

$$A = N_A \cdot 10^9 \cdot M_D \cdot N_P \cdot N_Y \cdot K_{isc}$$

 $M_{D} = 1.35 \text{ kT}$ Blei (1.36 kT Eisen) $N_{p} = 4.5 \cdot 10^{19} \text{ pot}$ $N_{Y} = 5$ $K_{iso} = 1.066 \text{ (Blei), } 1.031 \text{ (Eisen)}$

NC Events

- Welche Ereignisse werden als NC registriert?
 - echte v-NC Events

$$T_{1}^{NC} = \int_{E} \sigma_{\nu_{\mu},N}^{NC}(E_{\nu}) \cdot \epsilon_{\nu_{\mu}}^{NC}(E_{\nu}) \cdot \Phi(E_{\nu_{\mu}})(1 - P_{\nu_{\mu} \to \nu_{\tau}}(E_{\nu_{\mu}}))dE_{\nu_{\mu}} + \int_{E} \sigma_{\nu_{\tau},N}^{NC}(E_{\nu}) \cdot \epsilon_{\nu_{\tau}}^{NC}(E_{\nu}) \cdot \Phi(E_{\nu_{\mu}})(P_{\nu_{\mu} \to \nu_{\tau}}(E_{\nu_{\mu}}))dE_{\nu_{\mu}} = \int_{E} \sigma_{\nu,N}^{NC}(E_{\nu}) \cdot \epsilon_{\nu}^{NC}(E_{\nu}) \cdot \Phi(E_{\nu_{\mu}})dE_{\nu_{\mu}}.$$

unabhängig von Oszillationswahrscheinlichkeit

- falsch identifizierte v_{μ} -CC Events

$$T_2^{NC} = \int_E \sigma_{\nu_{\mu},N}^{CC}(E_{\nu_{\mu}})(1 - \epsilon_{\nu_{\mu}}^{CC}(E_{\nu_{\mu}}))\Phi(E_{\nu_{\mu}})(1 - P_{\nu_{\mu} \to \nu_{\tau}}(E_{\nu_{\mu}}))dE_{\nu_{\mu}}$$

− falsch identifizierte v_{τ} -CC Events, $\tau \rightarrow \mu$ (18% aller τ -Zerfälle)

$$T_{3}^{NC} = \int_{E} \sigma_{\nu_{\tau}}^{CC}(E_{\nu_{\mu}}) (1 - \epsilon_{\nu_{\tau} \to \mu}^{CC}(E_{\nu_{\mu}})) \Phi(E_{\nu_{\mu}}) (P_{\nu_{\mu} \to \nu_{\tau}}(E_{\nu_{\mu}})) BR_{\tau \to \mu} dE_{\nu_{\mu}}$$

_ ν_{τ} -CC Events, τ → nicht μ (82% aller τ -Zerfälle)

$$T_4^{NC} = \int_E \sigma_{\nu_\tau}^{CC}(E_{\nu_\mu}) (\epsilon_{\nu_\tau \to no\mu}^{CC}(E_{\nu_\mu})) \Phi(E_{\nu_\mu}) (P_{\nu_\mu \to \nu_\tau}(E_{\nu_\mu})) (1 - BR_{\tau \to \mu}) dE_{\nu_\mu}$$

03.03.2008, T. Ferber

Eventklasse: v_{μ} NC

OPERA

CC Events

abhängig!

- Welche Ereignisse werden als CC registriert?
 Oszillations-
 - echte v_{μ} -CC Events

OPERA

$$T_1^{CC} = \int_E \sigma_{\nu_{\mu},N}^{CC}(E_{\nu_{\mu}}) \cdot \epsilon_{\nu_{\mu}}^{CC}(E_{\nu_{\mu}}) \cdot \Phi(E_{\nu_{\mu}}) \left([1 - P_{\nu_{\mu} \to \nu_{\tau}}(E_{\nu_{\mu}})] dE_{\nu_{\mu}} \right) dE_{\nu_{\mu}}$$

falsch identifierte v-NC Events

$$T_{2}^{CC} = \int_{E} \sigma_{\nu_{\mu},N}^{NC}(E_{\nu_{\mu}})(1 - \epsilon_{\nu_{\mu}}^{NC}(E_{\nu_{\mu}}))\Phi(E_{\nu_{\mu}})[1 - P_{\nu_{\mu}\to\nu_{\tau}}(E_{\nu_{\mu}})]dE_{\nu_{\mu}} + \int_{E} \sigma_{\nu_{\tau},N}^{NC}(E_{\nu_{\mu}})(1 - \epsilon_{\nu_{\tau}}^{NC}(E_{\nu_{\mu}}))\Phi(E_{\nu_{\mu}})[P_{\nu_{\mu}\to\nu_{\tau}}(E_{\nu_{\mu}})]dE_{\nu_{\mu}} = \int_{E} \sigma_{\nu,N}^{NC}(E_{\nu}) \cdot (1 - \epsilon_{\nu}^{NC}(E_{\nu})) \cdot \Phi(E_{\nu_{\mu}})dE_{\nu_{\mu}}.$$

– echte ν₋-CC Events, τ → µ (18% aller τ -Zerfälle)

$$T_{3}^{CC} = \int_{E} \sigma_{\nu_{\tau},N}^{CC}(E_{\nu_{\mu}})(\epsilon_{\nu_{\tau}\to\mu}^{CC}(E_{\nu_{\mu}}))\Phi(E_{\nu_{\mu}})[P_{\nu_{\mu}\to\nu_{\tau}}(E_{\nu_{\mu}})]BR_{\tau\to\mu}dE_{\nu_{\mu}}$$

– falsch identifizierte v_{τ} -CC Events, $\tau \rightarrow \text{ nicht } \mu$

$$T_4^{CC} = \int_E \sigma_{\nu_{\tau},N}^{CC} (E_{\nu_{\mu}}) (1 - \epsilon_{\nu_{\tau} \to no\mu}^{CC} (E_{\nu_{\mu}})) \Phi(E_{\nu_{\mu}}) [P_{\nu_{\mu} \to \nu_{\tau}} (E_{\nu_{\mu}})] (1 - BR_{\tau \to \mu}) dE_{\nu_{\mu}}$$

03.03.2008, T. Ferber

m_τ nicht vernachlässigbar:

 $\sigma_{\tau} < \sigma_{\mu}$ für E < 1TeV (!!!)

- CC-Klassifikations-Efficiency:
 - ν_{μ} -CC: hochenergetische Muonen
 - _ ν_{τ} -CC: weiche Muonen aus $\tau \rightarrow \mu$

Signatur:

- Schauer + isolierte Spur
- häufige Spektrometereinträge
- viel deponierte Energie in TT

$$\begin{aligned} \frac{d^2 \sigma_{\nu N}}{dx dy} &= \kappa^2 \frac{G_F^2 M_N E_{\nu}}{\pi} \bigg[\bigg[y^2 x + \frac{m_l^2 y}{2E_{\nu} M_N} \bigg] F_1(x, Q^2) \\ &+ \bigg[\bigg(1 - \frac{m_l^2}{4E_{\nu}^2} \bigg) - \bigg(1 + \frac{M_N x}{2E_{\nu}} \bigg) y \bigg] F_2(x, Q^2) \\ &\pm \bigg[xy \bigg(1 - \frac{y}{2} \bigg) - \frac{m_l^2 y}{4E_{\nu} M_N} \bigg] F_3(x, Q^2) \\ &+ \bigg[\frac{m_l^4}{4E_{\nu}^2 M_N^2 x} \bigg] F_4(x, Q^2) \\ &- \bigg[\frac{m_l^2}{2E_{\nu} M_N} \bigg] F_5(x, Q^2) \bigg] \end{aligned}$$

03.03.2008, T. Ferber

Eventklasse: v_{μ} CC

TOP VIEW (horizontal projection)

v-Spektrum: FLUKA2005 v-Interaktion: Negn100 Detektor: OpGeom 10.1 OpSim 7.3 (Geant 3.21) OpDigit 6.0

OPERA

Indirekte Messung der Neutrinomassendifferenz

UΗ

iii

- Blinde Analyse, 5 Ereignisklassen, je 3 Energiebereiche:
 15 Energie-Ereignisse-Klassen mit jeweils 200 Events
- Unterteilung in "CC" (muon-like) und "NC" (non muon-

CC/NC Separation: E_{dep}

CC-Ereignisse

03.03.2008, T. Ferber

CC/NC Separation: Spurlänge

CC-Ereignisse

NC-Ereignisse

03.03.2008, T. Ferber

CC/NC Verhältnis

• Erwartung $R_{theo} = (CC/NC)_{theo}$ ohne Oszillation:

$$R_{th.} = \left(\frac{CC}{NC}\right)_{th.} = \frac{T_1^{CC} + T_2^{CC}}{T_1^{NC} + T_2^{NC}} \\ = \frac{\epsilon_{\nu_{\mu}}^{CC} + R_{\nu} \cdot (1 - \epsilon_{\nu_{\mu}}^{NC})}{R_{\nu} \cdot \epsilon_{\nu_{\mu}}^{NC} + (1 - \epsilon_{\nu_{\mu}}^{CC})}$$

$$R_{\nu} = \frac{\sigma^{NC}}{\sigma^{CC}}$$
$$R_{\nu_e} = \frac{\sigma^{CC}_{\nu_e}}{\sigma^{CC}_{\nu_{\mu}}} \approx 1$$
$$R_{\nu_{\tau}} = \frac{\sigma^{CC}_{\nu_{\tau}}}{\sigma^{CC}_{\nu_{\mu}}}$$

• Erwartung $R_{exp} = (CC/NC)_{exp}$ mit Oszillation:

$$\begin{split} R_{exp.} &= \left(\frac{CC}{NC}\right)_{exp.} = \frac{T_1^{CC} + T_2^{CC} + T_3^{CC} + T_4^{CC}}{T_1^{NC} + T_2^{NC} + T_3^{NC} + T_4^{NC}} \\ &= \frac{\epsilon_{\nu_{\mu}}^{CC} (1-P) + R_{\nu} (1-\epsilon_{\nu_{\mu}}^{NC}) + R_{\nu_{\tau}} \epsilon_{\nu_{\tau} \to \mu}^{CC} PB + R_{\nu_{\tau}} (1-\epsilon_{\nu_{\tau} \to no\mu}^{CC}) P(1-B)}{R_{\nu} \cdot \epsilon_{\nu_{\mu}}^{NC} + (1-\epsilon_{\nu_{\mu}}^{CC}) (1-P) + R_{\nu_{\tau}} (1-\epsilon_{\nu_{\tau} \to \mu}^{CC}) P + R_{\nu_{\tau}} \epsilon_{\nu_{\tau} \to no\mu}^{CC} P} \end{split}$$

03.03.2008, T. Ferber

- CC/NC Verhältnis ist sensitiv auf Neutrinooszillationen
- Statistik nach 5 Jahren Laufzeit limitierender Faktor
- benötigt KEINE aufwendige kinematische Rekonstruktion
- noch zu berücksichtigen:
 - volle Fehlerkorrelation
 - Strahlkontamination (3.8 % anti- v_{μ} , 0.6 % v_{ρ})
- Verbesserungen:
 - v-Eisen Interaktionen (+100% Ereignisse)
 - Vertexrekonstruktion
 - Bessere Ereignisklassifikation (Neuronales Netz)

Vielen Dank für Ihre Aufmerksamkeit!

03.03.2008, T. Ferber Indirekte Messung der Neutrinomassendifferenz

CNGS-Beam MC

hist ene

12000

03.03.2008, T. Ferber

OPERA

CNGS Beam MC

Neutrinooszillation

	world best fit	1σ-error
Δm ₁₂ ²	7.9 ± 0.3 (10 ⁻⁵ eV ²)	4%
Δm ₂₃ ²	$2.5_{-0.25}^{+0.2} (10^{-3} \mathrm{eV^2})$	10%
sin² ⊖ ₁₂	0.3 _{-0.03} +0.02	9%
$\sin^2\Theta_{_{23}}$	0.5 _{-0.03} +0.08	16%
$\sin^2\Theta_{_{13}}$	≤ 0.025 (2σ)	-

03.03.2008, T. Ferber