

OPERA: A First v_{τ} Appearance Candidate

Björn Wonsak

On behalf of the OPERA collaboration.

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

The OPERA Experiment ν_τ Candidate Background & Sensitivity Outlook & Conclusions

The OPERA Experiment ν_τ Candidate Background & Sensitivity Outlook & Conclusions

Physics runs: 2008, 2009 and 2010 completed.

DISCRETE 2010 Rome, 08.12.10

CERN Neutrinos to Gran Sasso Beam

Beam Characteristics:

p.o.t./year	4.5 10 ¹⁹	
< E _v >	17 GeV	~
L	732 km	
$(\nu_e + \overline{\nu}_e) / \nu_\mu$	0.87%	
$\overline{\nu}_{\mu}/\nu_{\mu}$	2.1%	
ν_{τ}/ν_{μ}	negligible (~10 ⁻⁷)	

Total exposure expected: 22.5.10¹⁹ p.o.t.

PERA

Detector Concept

- - OPERA has to look for this special topology

'ERA

Most important background processes:

- Charm production and decay
- Hadron re-interactions in lead
- Large-angle muon scattering in lead

Use Emulsion Cloud Chambers (ECC) to achieve a high enough spatial resolution and density.

lacksquare

•

•

08.12.10

The OPERA Brick

- Sandwich of 56 Pb sheets 1mm + emulsions •
- High spatial resolution (track: $\sigma_x \approx 0.05 \mu m$, $\sigma_{\theta} \approx 2 m rad$, vertex: $\sigma_x \approx 1 \mu m$) •
- Changeable Sheets (CS) with emulsion doublet for first checks

Hybrid Detector

Target Region:

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per SM)

DISCRETE 2010 Rome, 08.12.10

Björn Wonsak, University of Hamburg

Target mass: ~1.25 kton

Magnetic Spectrometer:

Magnet Region: Iron & RPCs

Precision Tracker: 6 planes of drift tubes

DISCRETE 2010 Rome, 08.12.10

Expected Performance (Proposal)

Assumptions: Maximal mixing, 22.5x10¹⁹p.o.t. (5years @ 4.5x10¹⁹p.o.t./year)

τ Decay Channel	B.R. (%)	Signal	Background
$\tau \rightarrow \mu$	17.7	2.9	0.17
$\tau \rightarrow e$	17.8	3.5	0.17
$\tau \to h$	49.5	3.1	0.24
$\tau \rightarrow 3h$	15.0	0.9	0.17
Total		10.4	0.75
$ \frac{\text{Expected Eve}}{\sim 23600 v_{\mu}} \sim 23600 v_{\mu} = 0 $ $ \sim 520 \nabla_{\mu} = 0 $ $ \sim 205 v_{e} = 0 $	cnts: CC+NC interact nteractions \overline{v}_{e} interactions C interactions	ions For full mix $\Delta m^2 = 2.5$ (scales with	king and x 10^{-3} eV^2 h (Δm^2) ²).

OPERA

The OPERA Experiment v_{τ} Candidate Background & Sensitivity Outlook & Conclusions

CNGS Beam Performance & Statistics

2006	0.076x10 ¹⁹ p.o.t.	no bricks	Commissioning
2007	0.082x10 ¹⁹ p.o.t.	38 events	Commissioning
2008	1.78x10 ¹⁹ p.o.t.	1698 events (scan input)	First physics run
2009	3.52x10 ¹⁹ p.o.t.	3693 events (scan input)	Physics run
2010	4.04x10 ¹⁹ p.o.t. (23.Nov.)	4246 events (scan input)	Physics run

DISCRETE 2010 Rome, 08.12.10

Event Statistics (June 2010)

Analysis of first data:

- 5391 events collected by 2008-2009 run
- Brick tagging efficiency times vertex location efficiency: ~60%
- 1617 neutrino vertices located (50% of 2008-2009 statistics)
- 1088 events with decay search completed (187 NC and 901 CC events)
- Corresponds to 1.89×10^{19} p.o.t.
- 35% of 2008-2009 events

Expected Signal: 0.5 v_{τ} events (for full mixing and $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$)

(Date: 22 August 2009, 19:27 (UTC))

DISCRETE 2010 Rome, 08.12.10

PERA

Large-area scan, full reconstruction of vertices and γ

Reconstructed v_{τ} Candidate

Reconstructed v_{τ} Candidate

PERA

08.12.10

Track Analysis

• Vertex tracks followed down (through several bricks) to assess the muonless nature of the event.

• Residual probability of v_{μ} CC event (due to a possibly undetected large angle muon) ~1%.

"Nominal" value of 5% assumed!

 \mathbf{FR}

OPERA

Event Track Features

TRACK NUMBER	PID	Probability	MEASUREMENT 1		MEASUREMENT 2		ENT 2	
			tan Θ _x	$tan \Theta_{\gamma}$	P (GeV/c)	tan ⊖ _x	$\tan \Theta_{\gamma}$	P (GeV/c)
1	HADRON range in Pb/em=4.1/1.2cm	Prob(µ)≈10-3	0.177	0.368	0.77 [0.66,0.93]	0.175	0.357	0,80 [0.65,1.05]
2	PROTON	range, scattering and dE/dx	-0.646	-0.001	0.60 [0.55,0.65]	-0.653	0.001	
3	HADRON	interaction seen	0.105	0.113	2.16 [1.80,2.69]	0.110	0.113	1,71 [1.42,2.15]
4 (PARENT)			-0.023	0.026		-0.030	0.018	
5	HADRON: range in Pb/em=9.5/2.8cm	Prob(µ)≈10 ⁻³	0.165	0.275	1.33 [1.13,1.61]	0.149	0.259	1,23 [0.98,1.64]
6	HADRON: range in Pb/emul=1.6/0.5 cm	Prob(µ)≈10 ⁻³				0.334	-0.584	0,36 [0.27,0.54]
7	From a prompt neutral particle		0.430	0.419	0.34 [0.22,0.69]	0.445	0.419	0.58 [0.39,1.16]
8 (DAUGHTER)	HADRON	interaction seen	-0.004	-0.008	12 [9,18]	-0.009	-0.020	
			1uonles	ss even	t (favore	d hypo	thesis)	

DISCRETE 2010 Rome, 08.12.10

γ -Attachment to Vertices

	Distance from 2ry vertex (mm)	IP to 1ry vertex (µm) <resolution></resolution>	IP to 2ry vertex (μm) <resolution></resolution>	Prob. of attach. to 1ry vtx*	Prob. of attach. to 2ry vtx*	Attachment hypothesis
1 st γ	2.2	45.0 <11>	7.5 <7>	<10-3	0.32	2ry vertex
$2^{nd} \gamma$	12.6	85.6 <56>	22 <50> * Probability	0.10 to find an Il	0.82 P larger thar	2ry vertex (favored)

Satisfying all selection criteria for hadronic kink \rightarrow first v_r candidate !

- γ 1 and γ 2 are both assumed as attached to 2_{ry} vertex
- The uncertainty on P₊ due to the alternative $\gamma 2$ attachment is < 50 MeV

VARIABLE	AVERAGE	Selection criteria		
kink (mrad)	41 ± 2	>20		
decay length (μm)	1335 ± 35	within 2 lead plates		
P daughter (GeV/c)	12 ⁺⁶ _3	>2		
Pt (MeV/c)	470 +230 -120	>300 (γ attached)		
missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000		
\$ (deg)	173 ± 2	>90		
10 years old criteria (@Proposal) — - Blind analysis				

Satisfying all selection criteria for hadronic kink \rightarrow first v_x candidate !

- γ 1 and γ 2 are both assumed as attached to 2_{ry} vertex
- The uncertainty on P₊ due to the alternative γ 2 attachment is < 50 MeV

	VARIABLE	AVERAGE	Selection criteria		
	kink (mrad)	41 ± 2	>20		
	decay length (μm)	1335 ± 35	within 2 lead plates		
	P daughter (GeV/c)	12 ⁺⁶ _3	>2		
	Pt (MeV/c)	470 ⁺²³⁰ -120	>300 (γ attached)		
	missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000		
	ϕ (deg)	173 ± 2	>90		
1	10 years old criteria (@Proposal) — →Blind analysis				

Characteristics of Decay Topology

Björn Wonsak, University of Hamburg

DISCRETE 2010 Rome, 08.12.10

Kinematical Cuts to be Passed

ERA

P₊ Characteristics

Björn Wonsak, University of Hamburg

DISCRETE 2010 Rome, 08.12.10

- Invariant mass of $\gamma\gamma$ -system: Compatible with π^0 mass value
- Invariant mass of the $\pi\gamma\gamma$ -system: Compatible with ρ (770)

π° mass	ρ mass
120 ± 20 ± 35 MeV	640 +125 +100 MeV

• ρ is created in about 25% of the τ decays:

$$\tau
ightarrow
ho$$
 ($\pi \pi^0$) ν_{τ}

OPERA collaboration: "Observation of a first v_{τ} candidate event in the OPERA experiment...", Phys. Lett. B 691 (2010) 138

The OPERA Experiment ν_τ Candidate Background & Sensitivity Outlook & Conclusions

Prompt v_r ~ 10⁻⁷/CC
 Decay of charmed particles produced in v_e interactions ~ 10⁻⁶/CC
 Double charm production ~ 10⁻⁶/CC
 Decay of charmed particles produced in v_µ interactions ~ 10⁻⁵/CC
 Hadronic reinteractions ~ 10⁻⁵/CC

Significance of v_{τ} Observation

We observe 1 event in the 1-prong hadronic $\boldsymbol{\tau}$ decay channel

• <u>Background expectation for 1-prong hadron decay:</u> 0.018 ± 0.007 (syst) events

Probability that the observed event is due to background: 1.8 % Significance of v_{τ} observation in OPERA: 2.36 σ

• Total background from all decay modes: 0.045 ± 0.020 (syst) events

Probability that the observed event is due to background: 4.5 % Significance of v_{τ} observation in OPERA: 2.01 σ

The OPERA Experiment v_{τ} Candidate Background & Sensitivity Outlook & Conclusions

- OPERA searches for $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}} \to \nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ appearance.
- A complete analysis of a subsample has been done.
- One muonless event with a $\tau \to$ 1-prong hadron decay topology has been detected.

- The event passes all kinematical cuts.
- \rightarrow It is our first candidate event for $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance.
- $\rightarrow \Delta m_{_{23}}^2$ values > 7.5 x 10⁻³ eV² can be excluded at 90% CL

The probability for the event to be background induced is 1.8%. \rightarrow 2.36 σ significance

(If all decay modes are included: 4.5% \rightarrow 2.01 σ significance)

Outlook

- 2010: Getting close to nominal 4.5x10¹⁹p.o.t.
- 2011: Partial compensation expected for the 2012 break
- 2012: LHC stop ? \rightarrow no SPS, no p.o.t.
- We need enough p.o.t. (22.5x10¹⁹) to obtain a significant (4 σ) result with high probability \rightarrow we need a run 2013, if SPS is stopped 2012
- All events of 2008 and 2009 scanned by end of 2010.

Waiting for more v_{τ} candidates...

Thank you for your attention!

Backup Slides:

DISCRETE 2010 Rome, 08.12.10

Emulsion Scanning

The frames correspond to the scanning area:

- Yellow short lines: Measured tracks
- Other colored lines: Interpolation or extrapolation

Emulsion Scanning

The frames correspond to the scanning area:

- Yellow short lines: Measured tracks
- Other colored lines: Interpolation or extrapolation

Emulsion Scanning

The frames correspond to the scanning area:

- Yellow short lines: Measured tracks
- Other colored lines: Interpolation or extrapolation

