

Status of OPERA: Observation of a first candidate for v_{τ} -appearance

Björn Wonsak

University of Hamburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Neutrino Mass and Mixing

$$\Delta m_{solar}^{2} = m_{2}^{2} - m_{1}^{2} \approx 8 \cdot 10^{-5} \text{eV}^{2},$$

$$|\Delta m_{atm}^{2}| = |m_{3}^{2} - m_{2}^{2}| \approx 2 \cdot 10^{-3} \text{eV}^{2}$$

$$\begin{pmatrix} \Psi_{e} \\ \Psi_{\mu} \\ \Psi_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \\ \Psi_{3} \end{pmatrix}$$

$$\theta_{23} \approx 45^{\circ} \qquad \theta_{13} < 13^{\circ}, \delta? \qquad \theta_{12} \approx 33^{\circ}$$
SuperKamiokande, Double-Chooz Solar v experiments, Kamland

Neutrino Mass and Mixing

$$\Delta m_{solar}^{2} = m_{2}^{2} - m_{1}^{2} \approx 8 \cdot 10^{-5} \text{eV}^{2},$$

$$|\Delta m_{atm}^{2}| = |m_{3}^{2} - m_{2}^{2}| \approx 2 \cdot 10^{-3} \text{eV}^{2}$$

$$\begin{pmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \\ \psi_{$$

Heidelberg, 07.03.12

 \mathbf{O}

MINOS Results: Fit to Oscillation Hypothesis

Physics runs: 2008 and 2009 completed, 2010 ongoing

Heidelberg, 07.03.12

CERN Neutrinos to Gran Sasso Beam

Beam Characteristics:

p.o.t./year	4.5 10 ¹⁹	
<e<sub>v></e<sub>	17 GeV	$= \frac{1}{2} \times 10^9 = \frac{1}{2} \frac{1}{2} \times 10^9 = \frac{1}{2} $
L	732 km	
$(\nu_e + \nu_e)/\nu_\mu$	0.87%	Beneficial and the second seco
ν_{μ}/ν_{μ}	2.1%	0.15 0.15
ν_{τ}/ν_{μ}	negligible (~10 ⁻⁷)	
Total exposure expected: 22.5 [.] 10 ¹⁹ p.o.t.		0 5 10 15 20 25 30 35 40 45 50 E (GeV

OPERA

Detector Concept

- Goal: Direct observation of v_{τ} in v_{μ} beam v_{μ} $v_{\tau} \rightarrow \tau + X$ Oscillation $v_{\tau} \rightarrow cc$. $\tau decay$ $h^{\tau} v_{\tau} \overline{v_{\mu}}$ 17.7% $h^{\tau} v_{\tau}$ neutrals 49.5% $e^{\tau} v_{\tau} \overline{v_{e}}$ 17.8%
 - $h^+h^-\nu_{\tau}$ neutrals 15.0 %
- OPERA has to look for this special topology

ERA

Most important background processes:

- Charm production and decay
- Hadron re-interactions in lead
- Large-angle muon scattering in lead

Use Emulsion Cloud Chambers (ECC) to achieve a high enough spatial resolution and density.

The OPERA Brick

- Sandwich of 56 Pb sheets 1mm + emulsions •
- High spatial resolution (track: $\sigma_x \approx 0.05 \mu m$, $\sigma_{\theta} \approx 2 m rad$, vertex: $\sigma_x \approx 1 \mu m$) •
- Changeable Sheets (CS) with emulsion doublet for first checks

•

•

Hybrid Detector

Heidelberg, 07.03.12

Target Region:

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per SM)

Heidelberg, 07.03.12

Björn Wonsak

Target mass: ~1.35 kton

Magnetic Spectrometer:

Magnet Region: Iron & RPCs Precision Tracker: 6 planes of drift tubes

Heidelberg, 07.03.12

Reconstruction (I): Magnetic Spectrometer

Heidelberg, 07.03.12

Reconstruction (II): Brick Finding

Electronic data (Target Tracker & Muon spectrometer)

Track identified as a muon (P=3.394 GeV/c)

)PERA

Brick Manipulation System

- Bricks are automatically extracted
- Position of brick at given time is saved

Brick Validation with Changeable Sheet (CS)

CS doublet alignment by Compton electrons: 2.5 microns

Scanning Effort/Event:CHORUS1x1 mm²DONUT5x5 mm²OPERA100x100 mm²

So far, 640.000 cm² of CS surface have been scanned in OPERA

'ERA

Brick Preparation for Scanning

- CS-Analysis
 - X-ray markings for alignment $\, \rightarrow \sim 10 \; \mu m$
 - Connection of CS doublets and brick
 - Search area is scanned for track with matching angle

x-ray machine

- Brick Alignment
 - X-ray markings \rightarrow ~ 40 μ m
 - First film-to-film connection
 - Film number identifier

Brick Development at GS

- Bricks are put into cosmic ray pit
- Cosmic rays used for local alignment
- 6 automatic development chains ready
- 150 bricks/week

Developing facility

Heidelberg, 07.03.12

Emulsion Scanning

ERA

Emulsion Scanning

The frames correspond to the scanning area:

- Yellow short lines: Measured tracks
- Other colored lines: Interpolation or extrapolation

Expected Performance (Proposal)

Assumptions: Maximal mixing, 22.5x10¹⁹p.o.t. (5years @ 4.5x10¹⁹p.o.t./year)

τDecay	B.R. (%)	Signal	Background
Channel		$\Delta m^2 = 2.5 \times 10^{-3} eV^2$	
$\tau \to \mu$	17.7	2.9	0.17
$\tau ightarrow e$	17.8	3.5	0.17
$\tau \to h$	49.5	3.1	0.24
au ightarrow 3h	15.0	0.9	0.17
Total		10.4	0.75

Expected Events:

- $\sim 23600~\nu_{_{\rm U}}$ CC+NC interactions
- $\sim 160 \quad v_e$ interactions
- ~ 115 v_{τ} CC interactions
- ~ 10 identified v_{τ}
- < 1 background

OPERA

CNGS Beam Performance & Statistics

2006	0.076x10 ¹⁹ p.o.t.	no bricks	Commissioning
2007	0.082x10 ¹⁹ p.o.t.	38 events	Commissioning
2008	1.78x10 ¹⁹ p.o.t.	1698 events (scan input)	First physics run
2009	3.52x10 ¹⁹ p.o.t.	3693 events (scan input)	Physics run
2010 (ongoing)	3.01x10 ¹⁹ p.o.t. (20.Sept.)	3167 events (20. Sept.)	Physics run

Heidelberg, 07.03.12

- This analysis corresponds to \sim 35% of the 2008-2009 run statistics, = 1.89 x 10¹⁹ p.o.t.
- 1813 events found in the target (scan input)
- Events with neutrino vertices located by scanning: 1617 (Brick tagging efficiency) x (vertex location efficiency) $\approx 60\%$
- Events for which "decay search" was completed: 1088 (187NC, 901CC)
- With the above statistics, and for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and full mixing, OPERA expects:

~ 0.5
$$v_{\tau}$$
 events

Impact Parameter Measurement

Momentum Measurement (ECC and Electronic Detector)

PERA

γ -Detection and Reconstruction of π ^o Mass

EM shower energy measured by shower shape analysis and Multiple Scattering method

Reconstructed mass from 2 EM showers ~ 160 MeV

π^0 Mass Resolution (Real Data)

1 σ mass resolution: ~ 66 MeV

Charm Candidate Event (Dimuon)

Background, if primary muon not identified:

- Flight length: 1330 microns
- Kink angle: 209 mrad
- IP of daughter: 262 microns
- Daughter muon: 2.2 GeV/c
- Decay P_t: 0.46 GeV/c

ERA

Charm Candidate Event (4-prong)

D_0 hypothesis: F.L.= 313.1µm, $\phi = 173.2^\circ$, invariant mass = 1.7 GeV

Heidelberg, 07.03.12

Charm Events Statistics

- P(daughter): >2.5 GeV/c
- P_t(kink): > 0.5 GeV/c (for kink events)
- Looser cuts for multi-prong events

20 charm candidate events selected by the kinematical cuts 3 of them with 1-prong kink topology Expected: 16.0 ± 2.9 out of which 0.80 ± 0.22 with kink topology Expected BG: ~2 events

Examples of distributions:

v_e Candidate Event

From a sub-sample of ~ 800 located events we detected $6 v_e$ candidates

electron

Additional physics subject: Study of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

Neutrino Oscillations The OPERA Experiment Detector Performance Special Events: Charm, v_e v_{τ} Candidate Outlook

(Date: 22 August 2009, 19:27 (UTC))

Heidelberg, 07.03.12

PERA

Muonless Event 9234119599

Heidelberg, 07.03.12

Large-area scan, full reconstruction of vertices and γ

Reconstructed v_{τ} Canditate

Reconstructed v_{τ} Candidate

Heidelberg, 07.03.12

γ -Attachment to Vertices

	Distance from 2ry vertex (mm)	IP to 1ry vertex (µm) <resolution></resolution>	IP to 2ry vertex (μm) <resolution></resolution>	Prob, of attach. to 1ry vtx*	Prob. of attach. to 2ry vtx*	Attachment hypothesis
1 st y	2.2	45.0 <11>	7.5 <7>	<10-3	0.32	2ry vertex
$2^{nd} \gamma$	12.6	85.6 <56>	22 <50>	0.10	0.82	2ry vertex (favored)

* Probability to find an IP larger than the observed one

Heidelberg, 07.03.12

Decay Topology Characteristics

Heidelberg, 07.03.12

Kinematical Cuts to be Passed

ERA

P₊ Characteristics

Heidelberg, 07.03.12

PERA

Interpretation of the Event

- Invariant mass of $\gamma\gamma$ -system: Compatible with π^0 mass value
- Invariant mass of the $\pi\gamma\gamma$ -system: Compatible with ρ (770)

π^{o} mass	ρ mass			
120 ± 20 ± 35 MeV	640 +125 +100 MeV			

• ρ is created in about 25% of the τ decays:

$$au
ightarrow
ho$$
 ($\pi \pi^0$) $u_{ au}$

OPERA collaboration: "Observation of a first v_{τ} candidate event in the OPERA experiment...", Phys. Lett. B 691 (2010) 138

Significance of ν_τ Observation

We observe 1 event in the 1-prong hadronic τ decay channel

<u>background expectation for 1 prong hadron decay:</u>

 0.011 events (hadronic re-interactions)
 + 0.007 events (charm)
 = 0.018 ± 0.007 (syst) events 1-prong hadron

probability that the observed event is due to background: 1.8 % significance of v_{τ} observation in OPERA: 2.36 σ

• background from all decay modes: 0.045 ± 0.020 (syst) events total BG

probability that the observed event is due to background: 4.5 % significance of ν_τ observation in OPERA: 2.01 σ

Neutrino Oscillations The OPERA Experiment Detector Performance Special Events: Charm, v_e v_{τ} Candidate Outlook

Outlook

- 2010: Getting close to nominal 4.5x10¹⁹p.o.t.
- 2011: Negotiations with CERN ongoing, aim at partial compensation for the 2012 break
- 2012: LHC stop ? \rightarrow no SPS, no p.o.t.
- We need enough p.o.t. (22.5x10¹⁹) to obtain a significant (4 σ) result with high probability
- All events of 2008 and 2009 scanned by end of 2010.

Waiting for more ν_{τ} candidates...

Backup Slides:

Expected performance of OPERA vs running time

Minimal number of events to be observed to claim a 4σ or 3σ signal in OPERA as a function of the background (B/S ratio)

Analysis status (September 2010)

Status brick handling

)PERA

Peculiar topologies

Lab	Events Located	Decay search	Charm Candidates	\mathbf{v}_{e}	ν_{τ} candidates
		(CC)			
Total	2367	1406	36	9	1

Electronic Detectors

Preliminary (paper in preparation)

Minimum bias kinematical sample:

A sample of numu CC events with the momenta of all hadronic tracks measured in the ECC by MCS with the scanforth

Some preliminary comparisons Data/MC 49 4.884 Entries 14 Entries Mean Entried 1.254 Meon 0.5341 12 12 10 6 8 5 4.5 Total energy of Muon Pt Total Pt of charged charged hadrons at hadrons primary vertex (masses neglected)

Short baseline \overline{v}_{e} -appearance ?

Compatibility of \overline{v}_{e} -Data

PERA

MINOS $\overline{\nu}_{\mu}$ -data

- Scheme of 3 flavour v-oscillation is well established.
- We already started to get precise data on the oscillation parameters.
- There seems to be some tension with \overline{v} -data sets.

Suprises are still possible!

We need as many unambiguous answers as possible!

Detector Concept

 $h^+h^-\nu_{\tau}$ neutrals 15.0 %

• OPERA has to look for special topology

 → Use Emulsion Cloud Chambers (ECC) to
→ achieve high enough spatial resolution and density.

ERA

Most important background processes:

- Charm production and decay
- Hadron re-interactions in lead
- Large angle myon scattering in lead

