

Recent results from the OPERA experiment

Björn Wonsak

University of Hamburg

bmb+**f** - Förderschwerpunkt

OPERA

Großgeräte der physikalischen Grundlagenforschung

The Collaboration

~140 physicists, 28 institutions, 11 countries

Croatia IRB Zagreb

France LAPP Annecy IPHC Strasbourg

Naples Padova Rome Salerno

Italy

Bari

Bologna

L'Aquila

LNGS Assergi

LNF Frascati

Korea Jinju

Russia INR RAS Moscow LPI RAS Moscow **ITEP Moscow** SINP MSU Moscow **JINR Dubna**

Germany Hamburg

Israel Technion Haifa

✿

Japan Aichi Toho Kobe Nagoya Nihon

Switzerland Bern

Turkey **METU** Ankara

The OPERA Experiment v_{τ} Candidates v_{e} Analysis Outlook

The OPERA Experiment v_{τ} Candidates v_{e} Analysis Outlook

OPERA: Oscillation Project with Emulsion tRacking Apparatus

Long baseline neutrino oscillation experiment Very pure $\nu_{\!_{\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ beam from CERN to LNGS

Goal: Observation of v_{τ} appearance

MIAMI2013, 10.12.13

CERN Neutrinos to Gran Sasso Beam

Beam Characteristics:

p.o.t./year	4.5 10 ¹⁹	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
< E _v >	17 GeV	v_{μ} flux at Gran Sasso
L	730 km	0.04 to τ
$(\nu_e + \overline{\nu}_e) / \nu_\mu$	0.87% *	
$\overline{\nu}_{\mu}/\nu_{\mu}$	2.0% *	
ν_{τ}/ν_{μ}	negligible (~10 ⁻⁷)	005 10 15 20 25 30 35 40 45 50 E _v (GeV)
		*Interaction rates at LNGS

OPERA

Detector Concept

- Goal: Direct observation of v_{τ} in v_{μ} beam $v_{\mu} \dots v_{\tau} \xrightarrow{} c_{C^{-}} \underbrace{\tau^{-} + X}_{\tau \text{ decay}} \begin{bmatrix} \mu^{-} v_{\tau} \overline{v}_{\mu} & 17.7 \% \\ h^{-} v_{\tau} \text{ neutrals} & 49.5 \% \\ e^{-} v_{\tau} \overline{v}_{e} & 17.8 \% \\ h^{+}h^{+}v_{\tau} \text{ neutrals} & 15.0 \% \end{bmatrix}$
 - OPERA has to look for this special topology

ERA

Most important background processes:

- Charm production and decay
- Hadron re-interactions in lead
- Large-angle muon scattering in lead (LAS)

Use Emulsion Cloud Chambers (ECC) to achieve a high enough spatial resolution and density.

The OPERA Brick

- Sandwich of 56 Pb sheets 1mm + emulsions
- High spatial resolution (track: $\sigma_x \approx 0.05 \mu m$, $\sigma_{\theta} \approx 2 m rad$, vertex: $\sigma_x \approx 1 \mu m$) •
- Changeable Sheets (CS) with emulsion doublet for first checks

•

•

Hybrid Detector

MIAMI2013, 10.12.13

Target Region:

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per SM)

MIAMI2013, 10.12.13

Björn Wonsak

Target mass: ~1.25 kton

Magnetic Spectrometer:

Magnet Region: Iron & RPCs Precision Tracker: 6 planes of drift tubes

MIAMI2013, 10.12.13

Reconstruction (I): Magnetic Spectrometer

MIAMI2013, 10.12.13

Björn Wonsak

Reconstruction (II): Brick Finding

Track identified as a muon (P=3.394 GeV/c)

)PERA

Brick Manipulation System

• Bricks are automatically extracted

• Position of brick at given time is recorded in database

3D image: 16 tomographic images

MIAMI2013, 10.12.13

Scan Volume around stopping point for tracks reconstructed in several plates

Volume around interaction point ~2cm³

Volume around interaction point ~2cm³

Search tracks pointing to common interaction point

Volume around interaction point ~2cm³

Oscillation Analysis

Status of the Data Analysis

Run 2008 \rightarrow 2012

Status of the Data Analysis

In total $18 \cdot 10^{19}$ pot $\rightarrow 20\%$ less than in proposal

 \rightarrow 19505 neutrino interaction within target

<u>At the point of this analysis:</u> 6067 located interaction points 4969 completed decay searches

Years	p.o.t. (x10 ¹⁹)	Status	Selected Data sample	# of Decay Searched events
2008-2009	5.27	Completed	mutli-bricks + all $P\mu$	2783
2010-2011-2012	12.7	In progress 1 brick + P_{μ} < 15 GeV		2186
Total	18.0		~64%	4969

Charm Hadron Production

Topology similar to τ -decay (decay modes and lifetime) but with μ at primary vertex \rightarrow good control sample

MIAMI2013, 10.12.13

Charm Hadron Production

2008-2010 data analysis:

	charm	background	expected	data
l prong	20 ± 3	9 ± 3	29 ± 4	19
2 prong	15 ± 2	3.8 ± 1.1 19 ± 2		22
3 prong	5 ± 1	1.0 ± 0.3	6 ± 1	5
4 prong	0.8 ± 0.2	-	0.8 ± 0.2	4
All	41±4	14±3	55±5	50

Background mainly from hadronic interaction

Charm Hadron Production

2008-2010 data analysis:

Kolmogorov test > 0.99 for all plots

MIAMI2013, 10.12.13

The OPERA Experiment v_{τ} Candidates v_{e} Analysis Summary/Outlook

(Date: 22 August 2009, 19:27 (UTC))

MIAMI2013, 10.12.13

PERA

Muonless Event 9234119599

MIAMI2013, 10.12.13

-

Large-area scan, full reconstruction of vertices and γ

Characteristics of Decay Topology

MIAMI2013, 10.12.13

Kinematical Cuts to be Passed

ERA

2nd v_{τ} Candidate

MIAMI2013, 10.12.13

OPERA

2nd v_{τ} Candidate

$$\tau \rightarrow 3h ~\nu_{_\tau}$$

parent

- Nuclear fragments visible as short highly ionizing tracks
- Give additional information for background reduction

2nd v_{τ} Candidate

OPERA

3rd $\nu_{_\tau}$ Candidate

Muon momentum: 2.8±0.2 GeV/c from range Consistent with MCS in bricks 3.1 [2.6,4.0] GeV/c

Charge Determination of $\boldsymbol{\mu}$

Parabolic fit of RPC hits: $X(z)=p0+p1\cdot x \cdot (z-z_0)+p2\cdot x \cdot (z-z_0)^2$ Together with linear fit of TT hits : $X(z)=p0+p1\cdot x \cdot (z-z_0)^2$

PERA

3rd $\nu_{_{\tau}}$ Candidate

$\tau \rightarrow \mu$ decay

 γ attached to primary vertex

3rd v_{τ} Candidate

Decay in the plastic base

Nature of Track 2

- Stops in downstream brick without visible charged particles
- Range vs. momentum inconsistent with muon hypothesis

3rd v_{τ} Candidate

$\nu_{\mu} \rightarrow \nu_{\tau}$ Analysis Overview

Subsample corresponding to 61% of total expectation: (2008-2009 & selected 2010-2012 sample)

- \rightarrow 3 events observed vs. 0.22 events bkg.
- \rightarrow p-value for bgk-fluctuation: 7.3·10⁻⁴

\rightarrow No-oscillation hypothesis excluded at 3.2 σ

Decay channel	expected signal events $\Delta m^2 = 2.32 \times 10^{-3} eV^2$		PRELIMINARY	
	Full sample	Analysed	background	Observed
	18×10 ¹⁹ p.o.t.	sample	analysed sample	events
$\tau \to \mu$	0.90	0.56	0.026	1
$\tau \rightarrow e$	1.06	0.49	0.065	
$\tau \rightarrow h$	0.70	0.66	0.045	1
$\tau \rightarrow 3h$	0.99	0.51	0.090	1
Total	3.65	2.22	0.216	3

The OPERA Experiment v_{τ} Candidates v_{e} Analysis Summary/Outlook

$v_{e}^{}$ Appearance Analysis

$v_Appearance Analysis$

2008+2009 sample (5.25 x 10¹⁹ p.o.t.) → Observed 19 v_e events

ν_{a} Appearance Analysis

2008+2009 sample (5.25 x 10¹⁹ p.o.t.) → Observed 19 v_e events

Expected v events:

- v_e beam contamination 19.3 ± 2.8 - Background: $\tau \rightarrow e$ + misidentified π_0 0.5 ± 0.2

⁵⁰⁰ um

From 3-flavour oscillation: $\nu_{\mu} \rightarrow \nu_{e}$ 1.4 events (sin2(2 θ_{13}) = 0.098)

ν_{P} Appearance Analysis

2008+2009 sample (5.25 x 10¹⁹ p.o.t.) → Observed 19 v_e events

→ compatible with non-oscillation hypothesis

- Star	
71	
	500 um

Expected v events:

- v_e beam contamination 19.3 ± 2.8
- Background: $\tau \rightarrow e$
 - + misidentified $\pi_0 0.5 \pm 0.2$

From 3-flavour oscillation: $v_{\mu} \rightarrow v_{e}$ 1.4 events (sin2(2 θ_{13}) = 0.098)

v_e Appearance Analysis

$v_Appearance Analysis$

ERA

The OPERA Experiment v_{τ} Candidates v_{e} Analysis Summary/Outlook

Summary/Outlook

v_{τ} -appearance:

- 3 events observed
- Conservative background estimation
 - \rightarrow non-oscillation excluded with 3.2 σ
- Likelihood analysis improves this slightly
- Improved background studies under way
 - \rightarrow 4 σ in reach

v_{e} -appearance:

- No oscillation observed
 - \rightarrow can exclude significant parameter space for large Δm^2

Analysis ongoing, some interesting events under investigation

Thank you for your attention!

Backup slides

Impact Parameter

Expected Performance (Proposal)

Assumptions: Maximal mixing, 22.5x10¹⁹p.o.t. (5years @ 4.5x10¹⁹p.o.t./year)

τ Decay Channel	B.R. (%)		Signal	Background
$\tau \to \mu$	17.7		2.9	0.17
$\tau ightarrow e$	17.8		3.5	0.17
$\tau \to h$	49.5		3.1	0.24
$\tau \to 3h$	15.0	0.9		0.17
Total			10.4	0.75
Expected Events: $\sim 23600 v_{\mu}$ CC+NC interactions			For full mixin	g and
~ 205 $v_e + \overline{v}_e$ interactions ~ 115 v CC interactions		\checkmark $\Delta m^2 = 2.5 x$ (scales with ($(\Delta m^2)^2$).	

OPERA