Short-baseline oscillations: DAE δ ALUS and IsoDAR with LENA

Oxford, 3 July 2012

Michael Wurm Universität Hamburg

Outline

- Decay-at-rest (DAR) neutrino sources
- Experimental setup for π-DAR beam measuring CP-violating phase (aka DAEδALUS)
- Experimental setups for sterile neutrino search (piDAR and IsoDAR)
- Expected sensitivities

Pion Decay-at-Rest (piDAR) source

- Resonant production of pions by low-energy (~1GeV), high-power (~MW) proton beam
- π^+ are stopped and decay via $(\pi^-$ absorbed in target, $\overline{\nu}_e < 0.04\%)$ $\pi^+ \rightarrow \mu^+ \nu_{\mu}; \qquad \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$
- \rightarrow Low energy (10-50 MeV) 'neutrino beam' of $\nu_{\rm e}$, ν_{μ} and $\overline{\nu}_{\mu}$

Isotope Decay-at-Rest (IsoDAR) source

- Beam-induced production of b⁻-decaying isotopes
- Good candidate: ⁸Li
 - $p + Be \rightarrow X + n;$ ⁷Li + n \rightarrow ⁸Li $\rightarrow 2\alpha + e^{-} + \bar{\nu}_{e}$

→ Pure \overline{v}_{e} 'neutrino beam' at several MeV peak energy

Proton source: High-power cyclotrons

The result is a decay-at-rest-flux That can be used for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ searches

piDAR experiment for δ_{CP}

How to measure δ_{CP} with antineutrinos only

DAE δ **ALUS approach:** Use $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance and exploit the L/E dependence in absolute rates SBNO, so no matter effects! \rightarrow oscillation probability in vacuum $(\sin^2 \theta_{23} \sin^2 2\theta_{13}) (\sin^2 \Delta_{31})$ $P \equiv$ $\mp \sin \delta (\sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12}) (\sin^2 \Delta_{31} \sin \Delta_{21})$ $+\cos\delta (\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}) (\sin\Delta_{31}\cos\Delta_{31}\sin\Delta_{21})$ + $(\cos^2 \theta_{23} \sin^2 2\theta_{12}) (\sin^2 \Delta_{21}).$ We want to see terms depending on terms depending on if δ is nonzero mass splittings mixing angles

$$\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$$

DEA δ ALUS' three-baseline design

Extraction of oscillation signature

Pulsing of the beam source

LENA as detector for DAE δ ALUS

- Original proposal assumed Gd-doped
 200kt water Cherenkov detector (LBNE)
- LENA is smaller (50kt), but features better detection efficiency for inverse β-decay and discrimination for ve, v¹²C channels
- First estimate from INT conference uses detector mass: 42.5kt
 IBD detection efficiency: 63% low! atmospheric v background: no duty cycle of cyclotrons: 75%
- → about 100 IBD events per year for each baseline

Projected sensitivity to δ_{CP}

Coverage of CP violation Parameter at LENA, 10 years

→ Predicted coverage for $\delta_{\rm CP}$ at 3 σ : 42% after 10 years

 \rightarrow Sensitivity is dominated by statistical uncertainty

Experimental setup vs. knowledge of θ_{13}

Setup assumes unknown and small θ_{13} . \rightarrow could be adjusted

Status of the DAEdALUS accelerator chain

Development work for high-power cyclotrons

Many European Accelerator Physicists are involved...

Multi Megawatt DAE
 $\delta ALUS$ Cyclotrons for Neutrino Physics

M. Abs^j, A. Adelmann^{*,b}, J.R. Alonso^c, W.A. Barletta^c, R. Barlow^h, L. Calabretta^f, A. Calanna^c, D. Campo^c, L. Celona^f, J. M. Conrad^c, S. Gammino^f, W. Kleeven^j, T. Koeth^a, M.Maggiore^e, H. Okuno^g, L.A.C. Piazza^e, M. Seidel^b, M. Shaevitz^d, L. Stingelin^b, J. J. Yang^c, J. Yeckⁱ

^aInstitute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland, 20742 ^bPaul Scherrer Institut, CH-5234 Villigen, Switzerland ^cDepartment of Physics Massachusetts Institute of Technology ^dColumbia University ^eNational Institute of Nuclear Physics - LNL ^fNational Institute of Nuclear Physics - LNS (Italy) ^gRiken ^hHuddersfield University, Queensgate Campus, Huddersfield HD1 3DH, UK ⁱIceCube Research Center, University of Wisconsin, Madison, Wisconsin 53706 ^jIBA-Research

European Universities/Institutes European industry

Sterile neutrino searches

Sterile neutrinos with piDAR

Beam configuration

- Proton beam:
 - E = 800 MeV, P = 100 kW
- Neutrinos (per year): 4x10²¹ in v_e,v_µ,v
 _µ,v
 _µ
 1.6x10¹⁸ in v
 _e
- Distance from LENA: 20m

Sterile neutrinos with piDAR

piDAR \rightarrow LENA provides capability to distinguish 3+1 and 3+2 scenarios

Beam configuration

- Proton beam:
 - E = 800 MeV, P = 100 kW
- Neutrinos (per year): $4x10^{21}$ in $v_e, v_\mu, \overline{v}_\mu$ $1.6x10^{18}$ in \overline{v}_e
- Distance from LENA: 20m

Sterile neutrino signal

- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance for 3+2: >10⁴ IBD events, S/B 10:1
- $v_e \rightarrow v_s$ disappearance: ~2x10⁵ v_e^{12} C CC events

Sensitivity with piDAR beam

Sterile neutrinos with IsoDAR

Proton energy required for neutron production is considerably lower than for piDAR beam. A single cyclotron (the injector) is sufficient. \overline{v}_{e} "beam" 16 m target: production of ⁸Li, Injector β -decay, <E_v>=6MeV cyclotron: $P = 600 \, kW$ Observation of disappearance $E_{n} = 60 MeV$

pattern to v_s in >10⁶ IBD events

⁸Li production target

⁹Be target

- cylinder: 20 x 20 cm
- neutron source
- surrounded by 5 cm D₂O for moderation and cooling

⁷Li sleeve

- cyl.: 1.5m long, 2m diameter
- enriched to 99.99% from 92.4% of natural ⁷Li content
- surrounded by graphite reflector
- ⁸Li from n-capture: 14.6 ⁸Li per 1000 pot
 → 1.3x10²³ ⁸Li in 5 yrs

KamLAND: L/E osc. pattern for 3+1 scenario

$$P_{3+1} = 1 - 4|U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2(\Delta m_{41}^2 L/E)$$

KamLAND: L/E osc pattern for 3+2 scenario

$$P_{3+2} = 1 - 4[(1 - |U_{e4}|^2 - |U_{e5}|^2) \times (|U_{e4}|^2 (\sin^2(\Delta m_{41}^2 L/E) + |U_{e5}|^2 (\sin^2(\Delta m_{51}^2 L/E)) + |U_{e4}|^2 |U_{e5}|^2 (\sin^2(\Delta m_{54}^2 L/E)].$$

(3+2) with Kopp/Maltoni/Schwetz Parameters

IsoDAR sensitivity for sterile neutrinos

Two analyses

- shape-only (SO): dashed line
- rate+shape (RS): solid line
- ightarrow increases reach for large Δm^2
- \rightarrow requires 5% flux normalization

Comparison

- Global fit allowed region: excluded at 5σ after 0.3 yrs
- PBq antineutrino source
 ¹⁴⁴Ce at Borexino center
- KATRIN β decay spetral shape kink close to the endpoint

Sensitivity plot for 5yrs of KamLAND

Conclusions

- Liquid-scintillator detectors are probably the optimum receptor for DAR beams.
- DAE δ ALUS@LENA: first (conservative) calculations show a competitive sensitivity for δ_{CP} measurement. Refined calculations and experimental layout are needed.
- Sterile v experiments with pi/IsoDAR:
 - 2nd generation experiments featuring sufficient sensitivity to distinguish
 3+1 and 3+2 scenarios
 - several oscillation modes can be tested

piDAR:
$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{e} \rightarrow \nu_{s}$$

IsoDar: $\overline{\nu}_{e} \rightarrow \overline{\nu}_{s}$

Thank you!

Search for CP-violating phase
DAEδALUS: arXiv:1006.0260
Searches for sterile neutrinos
piDAR: arXiv:1105.4984
IsoDAR: arXiv:1205.4419

Many thanks to Janet Conrad and Mike Shaevitz!

Backup Slides

Reminder about Cyclotrons

We employ an "isochronous cyclotron" design where the magnetic field changes with radius. This can accelerate many bunches at once.

Why H₂+ ???

To reduce the "space charge" at injection...

 H_2 + gives you 2 protons out for 1 unit of +1 charge in!

Simple to extract! Just strip the electron w/ a foil

Design Principle: "Plug-and-play"

Ion Source:

Built by our collaborators At Catania.

We will be studying Beam extracted from this Ion source in the Teststand at Best Cyclotron, Inc., Vancouver, this winter

As a step in the development of DAEδALUS We are proposing to use this as an isotope decay-at-rest source

arXiv	.org > hep-ex > arXiv:1205.4419	Search or Article-i
High	Energy Physics – Experiment	
An Dec	Electron Antineutrino Disappearance Search Using High-Rate 8Li Productior ay	n and
A. Bu Kamy	ngau, A. Adelmann, J.R. Alonso, W. Barletta, R. Barlow, L. Bartoszek, L. Calabretta, A. Calanna, D. Campo, J.M. Conrad, Z. rshkov, M.H. Shaevitz, I. Shimizu, T. Smidt, J. Spitz, M. Wascko, L.A. Winslow, J.J. Yang	Djurcic, Y.

Industry is interested in this injector cyclotron...

5 mA H2+ beam = 10 mA protons on target nearly an order of magnitude higher than any existing or designed cyclotron (600 kW on target)

60 MeV/n -- typical of many medical isotope machines

Isotope	half-life	Use	
⁵² Fe	8.3 h	The parent of the PET isotope ⁵² Mn	
		and iron tracer for red-blood-cell formation and brain uptake studies.	
¹²² Xe	20.1 h	The parent of PET isotope ¹²² I used to study blood brain-flow.	
²⁸ Mg	21 h	A tracer that can be used for bone studies, analogous to calcium	
¹²⁸ Ba	2.43 d	The parent of positron emitter ¹²⁸ Cs.	
		As a potassium analog, this is used for heart and blood-flow imaging.	
⁹⁷ Ru	2.79 d	A γ -emitter used for spinal fluid and liver studies.	
117m Sn	13.6 d	A γ -emitter potentially useful for bone studies.	
⁸² Sr	$25.4 \mathrm{d}$	The parent of positron emitter ⁸¹ Rb, a potassium analogue	
		This isotope is also directly used as a PET isotope for heart imaging.	

Table 2: Medical isotopes relevant to IsoDAR energues, from Ref. [29].

Potentially very useful outside of neutrino physics

We will use 1 MW targets (we can use muliple targets) Design is well understood from past DAR experiments...

Light target embedded in a heavy target

Also, no upstream targets!!!

Synergy with LBNO experiments

- LBNO experiments usually suffer from low \overline{v} statistics
- Optimal sensitivity can be reached if LBNO running v-only are combined with piDAR for v osc. data
- δ_{CP} coverage for DUSEL
 LBNE+DAEδALUS would
 increase from 65% to 85%