LENA performance: Astroparticle and geophysics

Hamburg, 14 June 2012

Michael Wurm Universität Hamburg

Neutrino signal at low energies

10³/yr

 $10^{3-4}/yr$

10⁴/MCi

Natural sources

- Galactic Supernova neutrinos 10⁴/SN
- Diffuse Supernova neutrinos 10/yr
- Solar neutrinos
 10⁴/d
- Dark matter annihilation
- Geoneutrinos

Man-made sources

- Reactor neutrinos
- Radioactive sources
- Pion decay-at-rest beams

Supernova neutrinos

SN neutrinos in LENA

- v_e from neutronisation burst
- $v\overline{v}$ pairs of all flavors from protoneutronstar cooling

For galactic SN (10kpc, $8M_{\odot}$, $<E_{\gamma}>=14MeV$): ca. 2x10⁴ events in 44kt target

Channel		Events	Threshold (MeV)	Spectrum
$\overline{\nu}_{\rm e}{\rm p} ightarrow{\rm n}{\rm e}^{\scriptscriptstyle +}$	СС	1.3x10 ⁴	* 1.8	✓
$\nu_e^{12}C \rightarrow {}^{12}N e^{-12}N e^{-12}$	СС	3.4x10 ²	17.3	(🗸)
$v_e^{12}C \rightarrow^{12}B e^+$	СС	1.8x10 ²	13.4	(🗸)
$\nu {}^{12}C \rightarrow {}^{12}C^* \nu$	NC	1.0x10 ³	15.1	×
$\nu p \rightarrow p \nu$	NC	2.6x10 ³	1.0	\checkmark
$\nu e^{-} \rightarrow e^{-} \nu$	NC CC	6.2x10 ²	0.2	\checkmark

*roughly 2x the rate in Super-Kamiokande

Expected signal from SN neutrinos

Signal above 10 MeV

- dominated by inverse beta decay
- coincidence signals allow to tag IBD and ¹²C-CC reactions
- ¹²C+v_e/v
 _e separation by simultaneous fit to energy and decay spectra
- γ-peak from ¹²C-NC reaction
- → LENA can resolve the different interaction channels!

Signal at 1 MeV

- dominated by v-proton scattering
- sensitive on threshold by ¹⁴C-decay
- extract ve-scattering by PSD?
- → vp-scattering unique feature of liquid scintillator detectors

Expected physics output from SN neutrinos

Astrophysics

- detailed information on core-collapse (v energy, flavor, time-profile)
 - initial neutronization burst
 - features of cooling phase
 - explosion shock-wave
- signals from dim SNe, black hole formation
- IBD: pointing to obscured SNe
- SNEWS, grav. wave exp.

Neutrino physics

- neutrino mass hierarchy by
 - neutronization burst
 - resonant flavor conversion in stellar envelope
 - Earth matter effect
 - signal rise time
- collective oscillations
- $v_{\rho} \rightarrow \overline{v}_{\rho}$ conversion
- unexpected effects ...

Diffuse SN neutrinos in LENA

Regular galactic Supernova rate: 1-3 per century

Alternative access:

- isotropic v background generated by SN on cosmic scales
- redshifted by cosmic expansion
- flux: 100/cm²s of all flavours
- rate too low for detection in current neutrino experiments (best limit by Super-Kamiokande)

In LENA: 2-20 \overline{v}_{e} per year (50kta)

Backgrounds for DSN search in LENA

Detection via Inverse Beta Decay

 \bar{v}_{e} +p \rightarrow n+e⁺

neutron tagging allows discrimination of most single-event bg limiting the detection in SK

Remaining Background Sources

- \blacksquare reactor and atmospheric $\overline{\nu}_{e}{}^{\prime}s$
- cosmogenic backgrounds:
 - fast neutrons and $^{9}\text{Li:}~\mu$ veto
 - atmospheric v NC events: PSD

Scientific Gain

- first detection of DSN
- average SNv spectrum
- fraction of dim/failed SNe (?)

Expected events: ~10² in 10 yrs (in energy window from 10-25MeV

~2x of GADZOOKS! expectation

Indirect light dark matter search

- low background level in IBD allows to search for \overline{v}_e from $\chi \overline{\chi} \rightarrow v_e \overline{v}_e$
- signature for annihilation: peak at $E = m_{\chi}$, with $m_{\chi} = 10 \dots 100$ MeV.

Solar neutrinos

Solar neutrino signal in LENA

Solar neutrino signal in LENA

Gain compared to Borexino

 γ -background for pep-v search pata (1.2 - 2.8 MeV)Bulk: vs, ¹¹C, ¹⁰C Ext. γ Best Fit 10^{4} 10^{4}

Borexino \rightarrow LENA

- fiducial volume: >300 times larger
- 4000 mwe at Pyhäsalmi → cosmic backgrounds reduced by factor 3-5
- Iower external γ background

Physics programme for solar neutrinoss

Astrophysics

- contribution of CNO cycle to solar fusion rate
- metallicity of solar core
- presence of time variations in solar neutrino flux (10⁻³ level)
 → helioseismic g-modes ...

Neutrino physics

- precision measurement of
 P_{ee} in the matter-vacuum transition region (1-5 MeV)
 by pep and ⁸B (CC) on ¹³C
 → non-standard interactions etc.
- $v_e \rightarrow \overline{v}_e$ conversion

Pee in matter-vacuum transition region

Geoneutrino emission by crust and mantle

The Earth heat flow problem

From surface measurement, the thermal power is determined to 47 ± 2 TW. Models determine the heat from radioactive decays of U, Th, K to 12-30 TW.

Is there a difference? And what accounts for the deficit?

Detection of geoneutrinos in LENA

IBD threshold of 1.8 MeV (only LS)

 $\overline{\nu}_{e}$ by U/Th decay chains

At Pyhäsalmi

expected geo-v rate

2x10³ yr⁻¹

■ reactor-v background 7X10²

Scientific Gain

- contribution of U/Th decays to Earth's total heat flow → 1%
- relative ratio of U/Th \rightarrow 5% → geochemistry: U/Th = 3.5 ... 4
- with several detectors at different sites: disentangle oceanic/continental crust
- test for hypothetical georeactor

Reactor neutrinos

Possible objectives

- Precision measurement of solar oscillation parameters, esp. Δm_{12}^2 @ Fréjus: $\sin^2 2\theta_{12}$ ~ 10% (3 σ) Δm_{12}^2 ~ 1% (3**o**)
- Neutrino mass hierarchy by $\Delta m_{13}^2 - \Delta m_{23}^2$ interference in P_{ee}(x) (but optimum distance is 60 km)

Nucleon decay search

Proton decay into $K^{\scriptscriptstyle +}\overline{\nu}$

coincidence: $\tau_{\rm K}$ = 13 ns energy: 250-450 MeV modified by Fermi motion for ¹²C

Proton decay into $K^{\scriptscriptstyle +}\overline{\nu}$

coincidence: $\tau_{\rm K}$ = 13 ns energy: 250-450 MeV modified by Fermi motion for ¹²C

Background

atmospheric v's rejected by rise time cut: **efficiency 0.67** hadronic channels: <1.2 per 1Mt yr (producing kaons) @ 4kmwe

Current SK limit: 2.3x10³³ yrs

Limit for LENA if no event is observed in 10yrs (0.5 Mt·yrs):

 $\tau_{\rm p}$ > 4x10³⁴ yrs (90%C.L.)

Sensitivity curves of other experiments

More details

The next-generation liquid-scintillator neutrino observatory LENA

Michael Wurm,^{1,2,*} John F. Beacom,³ Leonid B. Bezrukov,⁴ Daniel Bick,² Johannes Blümer,⁵ Sandhya Choubey,⁶ Christian Ciemniak,¹ Davide D'Angelo,⁷ Basudeb Dasgupta,³ Amol Dighe,⁸ Grigorij Domogatsky,⁴ Steve Dye,⁹ Sergey Eliseev,¹⁰ Timo Enqvist,¹¹ Alexey Erykalov,¹⁰ Franz von Feilitzsch,¹ Gianni Fiorentini,¹² Tobias Fischer,¹³ Marianne Göger-Neff,¹ Peter Grabmayr,¹⁴ Caren Hagner,² Dominikus Hellgartner,¹ Johannes Hissa,¹¹ Shunsaku Horiuchi,³ Hans-Thomas Janka,¹⁵ Claude Jaupart,¹⁶ Josef Jochum,¹⁴ Tuomo Kalliokoski,¹⁷ Pasi Kuusiniemi,¹¹ Tobias Lachenmaier,¹⁴ Ionel Lazanu,¹⁸ John G. Learned,¹⁹ Timo Lewke,¹ Paolo Lombardi,⁷ Sebastian Lorenz,² Bayarto Lubsandorzhiev,^{4, 14} Livia Ludhova,⁷ Kai Loo,¹⁷ Jukka Maalampi,¹⁷ Fabio Mantovani,¹² Michela Marafini,²⁰ Jelena Maricic,²¹ Teresa Marrodán Undagoitia,²² William F. McDonough,²³ Lino Miramonti,⁷ Alessandro Mirizzi,²⁴ Quirin Meindl,¹ Olga Mena,²⁵ Randolph Möllenberg,¹ Rolf Nahnhauer,²⁶ Dmitry Nesterenko,¹⁰ Yuri N. Novikov,¹⁰ Guido Nuijten,²⁷ Lothar Oberauer,¹ Sandip Pakvasa,²⁸ Sergio Palomares-Ruiz,²⁹ Marco Pallavicini,³⁰ Silvia Pascoli,³¹ Thomas Patzak,²⁰ Juha Peltoniemi,³² Walter Potzel,¹ Tomi Räihä,¹¹ Georg G. Raffelt,³³ Gioacchino Ranucci,⁷ Soebur Razzaque,³⁴ Kari Rummukainen,³⁵ Juho Sarkamo,¹¹ Valerij Sinev,⁴ Christian Spiering,²⁶ Achim Stahl,³⁶ Felicitas Thorne,¹ Marc Tippmann,¹ Alessandra Tonazzo,²⁰ Wladyslaw H. Trzaska,¹⁷ John D. Vergados,³⁷ Christopher Wiebusch,³⁶ and Jürgen Winter¹

¹Physik-Department, Technische Universität München, Germany

²Institut für Experimentalphysik, Universität Hamburg, Germany

³Department of Physics, Ohio State University, Columbus, OH, USA ⁴Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Institute for Nuclear Research, Russian Academy of Detences, Moscow, Russia

⁵Institut für Kernphysik, Karlsruhe Institute of Technology KIT, Germany

⁶Harish-Chandra Research Institute, Allahabad, India

Backup Slides

DSNB atmospheric ν NC background

- Cosmogenic produced neutrons no problem if d > 4000 mwe < 0.2 events / year
- Cosmogenic produced beta-neutron emitter (e.g. ⁹Li) no problem if d > 4000 mwe
 < 0.1 events / year
 - Atmospheric neutrino CC reaction

٠

- 10 < E / MeV < 30
- Atmospheric neutrino NC reaction neutron production data from KamLAND

n-scattering TOF exp. at MLL (Garching)

severe bg: reduction by pulse shape discrimination and/or statistical subtraction ? Laboratory experiments indicate that a strong bg-reduction can be achieved !

Preliminary results: Monte-Carlo simulation based on recent results of PSD parameter on LAB scintillators

Multivariate analysis in pep region

Cosmic vs. reactor background

Geoneutrinos and reactor background

Event rates for 44 kt years of exposure.

Short-baseline neutrino oscillations

Reactor neutrinos

Pion decay-at-rest sources

Low-energy (\overline{v}_e) sources \rightarrow liquid scintillator detectors are the best option!

Neutrino oscillometry

Concept: Short-baseline oscillation experiments using neutrinos from radioactive sources.

Radioactive neutrino sources

- v_e (monoenergetic) from EC sources: ⁵¹Cr, ³⁷Ar
- $\overline{\nu}_{\rm e}$ (E=1.8-2.3MeV) from ⁹⁰Sr (⁹⁰Y), ¹⁴⁴Ce
- \blacksquare large activity necessary for ν_e : 1MCi or more

Oscillation baseline

- for $\Delta m_{32}^2(\theta_{13})$: 750m for ⁵¹Cr (747keV)
- for Δm_{41}^2 (sterile): 1.3m

Scientific objectives

- check $P_{ee}(r)$ if θ_{13} is relatively large
- \blacksquare check CPT for ν and $\overline{\nu}$
- very sensitive in sterile v searches (sin²2 $\theta \approx 10^{-3}$)

Test of sterile neutrino scenarios

Fig. 8. Oscillometry curves for the case of three active and two sterile neutrinos in the (3+2) scenario with mass parameters proposed in [6]. In the figure top (green), middle (red) and bottom (blue) curves correspond to $sin^2(2\theta_{1n}) = 0.05; 0.10; 0.15$, respectively, with n=4, 5. The dashed lines indicate the statistical uncertainties (1 σ). Input parameters are (T_e)_{th} = 200 keV, R₀ = 11 m, exposure - 27.5 days, ⁵¹Cr-source intensity - 5 MCi. The background from solar neutrinos is taken from the BOREXINO experiment [26] as 0.5 events/day:t.

