LENA

Messengers of New Physics 11 Sep 12 NOW 2012, Otranto

> Michael Wurm Universität Hamburg

$\mathsf{LAGUNA} \rightarrow \mathsf{LAGUNA}\text{-}\mathsf{LBNO}$

- Consortium of European science institutions and industry partners
- Design studies funded by the European Community (FP7)
- LAGUNA: detector site, cavern, and oscillation baselines (2008-11)
- LAGUNA-LBNO: detector tank, instrumentation, and beam source (2011-14)

LENA detector layout

LENA physics programme

10/yr

 $10^{4}/d$

 $10^{3}/yr$

 $10^{3-4}/yr$

10⁴/MCi

Neutrinos at low energies

- Galactic Supernovae v's $10^4/SN$
- DSNB
- Solar neutrinos
- Dark matter annihilation
- Geoneutrinos
- Reactor neutrinos
- Radioactive sources
- Pion decay-at-rest beams

GeV energies

- Long-baseline neutrino beam
- Atmospheric neutrinos
- Proton decay

LENA physics programme

Neutrinos at low energies

- Galactic Supernovae v's
- DSNB
- Solar neutrinos
- Dark matter annihilation
- Geoneutrinos
- Reactor neutrinos
- Radioactive sources
- Pion decay-at-rest beams

GeV energies

- Long-baseline neutrino beam
- Atmospheric neutrinos
- Proton decay

Astrophysical neutrino sources

- stellar core collapse/fusion processes
- Earth heat flow, elemental composition

Neutrino physics

- mixing parameters
- neutrino mass hierarchy
- sterile flavors
- neutrino-antineutrino conversion
- non-standard interactions

Particle physics

- baryon number violation
- Iight dark matter

Astrophysical neutrino sources ...

Galactic Supernovae gravitational collapse <E>≈15MeV

d≈10kpc

φ≈10¹¹/cm²s

 $\chi \bar{\chi}
ightarrow \nu \bar{\nu}$ Dark Matter Annihilation

Sun He burning E<18MeV φ≈10¹⁰/cm²s

> *Geoneutrinos* natural U/Th E<3.4MeV φ≈10⁶/cm²s

galactic cosmic

... and observations in LENA

 $\chi \bar{\chi} \to \nu \bar{\nu}$

DM annihilation v's sensitive for $m_{\chi} \approx 10\text{-}100 \text{ MeV}$

Solar v's core metallicity CNO fusion rate helioseismic g-modes

> **Geo-ν's** radiogenic heat flow U/Th ratio

Supernova v's observe core-collape phases propagation of shock-wave observe dim/failed SNe

DSNB

average spectral temperature fraction of dim SNe

Neutrino mass hierarchy

Long-baseline neutrino beam

- 2288 km from CERN to Pyhäsalmi
 → large matter effectss
- LENA offers
 - calorimetric measurement (δE~8%)
 - pulse shape discrimination for NC
- \rightarrow >8 σ effect for 10²² pot
- \rightarrow further improved by particle tracking?

Neutrino mass hierarchy

Long-baseline neutrino beam

- 2288 km from CERN to Pyhäsalmi
 → large matter effectss
- LENA offers
 - calorimetric measurement (δE~8%)
 - pulse shape discrimination for NC
- \rightarrow >8 σ effect for 10²² pot
- \rightarrow further improved by particle tracking?

Supernova neutrinos

flavor- and energy-resolved detection in LENA

- neutronization burst
- resonant flavor conversion in SN envelope
- Earth matter effect → talk by Enrico Borriello
- signal rise time

Е

CP-violating phase

Long-baseline neutrino beam

- more difficult than mass hierarchy
 → larger role of NC background
- for 10²² pot: 3σ coverage of up to 50% (depends on other parameters)
- further studies on-going

CP-violating phase

Long-baseline neutrino beam

- more difficult than mass hierarchy
 → larger role of NC background
- for 10²² pot: 3σ coverage of up to 50% (depends on other parameters)
- further studies on-going

Pion decay-at-rest beam (DAEδALUS)

ightarrow talk by Matt Toups on Friday

- π^{\pm} from intense GeV proton source
- stopped π^+ decay $\rightarrow \nu_{\mu}, \nu_{e}, \overline{\nu}_{\mu}$, but no $\overline{\nu}_{e}!$
- short baselines:
 - 1.5 km: beam normalization
 - 40 km: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance search
 - IBD signal has very low background
- result of a preliminary study:
 4.8MW & 10yrs → 42% coverage (3σ)

Sterile neutrinos

If evidence is found in 1st generation experiments, LENA offers the possibility to investigate scenarios (e.g. 3+1 vs. 3+2) in high-statistics measurements.

Radioactive sources → talk by Aldo Ianni

- monoenergetic v_e (e.g. ⁵¹Cr) or v_e (e.g. ⁹⁰Sr) → disappearance search: $v_e \rightarrow v_s$
- energy: ~1MeV → osc. length ~1m
 → observe oscillation pattern within detector

Sterile neutrinos

If evidence is found in 1st generation experiments, LENA offers the possibility to investigate scenarios (e.g. 3+1 vs. 3+2) in high-statistics measurements.

Radioactive sources → talk by Aldo Ianni

- monoenergetic v_e (e.g. ⁵¹Cr) or \overline{v}_e (e.g. ⁹⁰Sr) → disappearance search: $v_e \rightarrow v_s$
- energy: ~1MeV → osc. length ~1m
 → observe oscillation pattern within detector

Decay-at-rest beams

- IsoDAR: beam-induced ⁸Li decay $\rightarrow \overline{v}_{e}$ beam of several MeV, disappearance
- **piDAR:** neutrinos at tens of MeV
 → L/E analysis of oscillation pattern

two observation modes accessible:

 $-v_{e} \rightarrow v_{s}$ disappearance

–
$$\overline{v}_{\mu}
ightarrow \overline{v}_{e}$$
 appearance

neutrino – antineutrino conversion

e.g. due to neutrino magnetic moment and a strong magnetic field

Solar ⁸B electron neutrinos

- no terrestrial \overline{v}_{e} background above ~8 MeV
- best current limit by KamLAND (4.5kt·yr): conversion probability < 5.3x10⁻⁵ (90%CL)
- back-of-the-envelope calc. for LENA (0.5Mt·yr): conv. prob. < 3x10⁻⁷ to 5x10⁻⁶ (90%CL)

depends on pulse shape discrimination of atmospheric v NC bg and DSNB flux

neutrino – antineutrino conversion

e.g. due to neutrino magnetic moment and a strong magnetic field

Solar ⁸B electron neutrinos

- no terrestrial \overline{v}_{e} background above ~8 MeV
- best current limit by KamLAND (4.5kt·yr): conversion probability < 5.3x10⁻⁵ (90%CL)
- back-of-the-envelope calc. for LENA (0.5Mt·yr): conv. prob. < 3x10⁻⁷ to 5x10⁻⁶ (90%CL)

depends on pulse shape discrimination of atmospheric v NC bg and DSNB flux

SN neutronization burst

- v_e flux around core collapse → ~2x10² ev. by ve/vp-scat.+¹²C(CC)
- \rightarrow additional $\bar{v_e}$ events?

Non-standard interactions

Solar matter effects

- transition from vacuum to matterdominated oscillations from 1-5 MeV
- NSI change the expected survival probability in the transition region

Scanning transition region in LENA

Elastic ve-scattering

- ⁷Be line at 866 keV 10⁴ /day
- pep line at 1.4 MeV few 100 /day
- 8B down to 2-3 MeV ~50 /day

CC interaction on ^{13}C $^{10^3}/yr$

- 2.2 MeV reaction threshold
- no de-convolution of recoil spectrum
- bg suppression by coincidence

Proton decay into $K^{\scriptscriptstyle +}\overline{\nu}$

SUSY-favored decay mode

Signature $p \rightarrow K^+ \overline{\nu}$ $\searrow \mu^+ \nu_{\mu} / \pi^0 \pi^+$

 \rightarrow kaon visible in liquid scintillator!

 \rightarrow fast coincidence signature ($\tau_{\rm K}$ = 13 ns)

 \rightarrow signal efficiency: ~65% (atm. v bg)

 \rightarrow remaining background: <0.1 ev/yr

Proton decay into $K^{+}\overline{\nu}$

 τ_{p} > 4x10³⁴ yrs (90%C.L.)

Signature $p \rightarrow K^+ \overline{\nu}$ $\searrow \mu^+ \nu_{\mu} / \pi^0 \pi^+$

 \rightarrow kaon visible in liquid scintillator!

 \rightarrow fast coincidence signature ($\tau_{\rm K}$ = 13 ns)

 \rightarrow signal efficiency: ~65% (atm. v bg)

 \rightarrow remaining background: <0.1 ev/yr

Conclusions

A liquid-scintillator detector on the scale of 50 kt will be a multipurpose v observatory:

→ Astrophysical neutrino sources

- stellar core collapse/fusion processes
- Earth heat flow, elemental composition

Neutrino physics

- mixing parameters
- neutrino mass hierarchy
- sterile flavors
- neutrino-antineutrino oscillations
- non-standard interactions

Particle physics

- baryon number violation
- light dark matter

Further reading

The next-generation liquid-scintillator neutrino observatory LENA

Michael Wurm,^{1,2,*} John F. Beacom,³ Leonid B. Bezrukov,⁴ Daniel Bick,² Johannes Blümer,⁵ Sandhya Choubey,⁶ Christian Ciemniak,¹ Davide D'Angelo,⁷ Basudeb Dasgupta,³ Amol Dighe,⁸ Grigorij Domogatsky,⁴ Steve Dye,⁹ Sergey Eliseev,¹⁰ Timo Enqvist,¹¹ Alexey Erykalov,¹⁰ Franz von Feilitzsch,¹ Gianni Fiorentini,¹² Tobias Fischer,¹³ Marianne Göger-Neff,¹ Peter Grabmayr,¹⁴ Caren Hagner,² Dominikus Hellgartner,¹ Johannes Hissa,¹¹ Shunsaku Horiuchi,³ Hans-Thomas Janka,¹⁵ Claude Jaupart,¹⁶ Josef Jochum,¹⁴ Tuomo Kalliokoski,¹⁷ Pasi Kuusiniemi,¹¹ Tobias Lachenmaier,¹⁴ Ionel Lazanu,¹⁸ John G. Learned,¹⁹ Timo Lewke,¹ Paolo Lombardi,⁷ Sebastian Lorenz,² Bayarto Lubsandorzhiev,^{4, 14} Livia Ludhova,⁷ Kai Loo,¹⁷ Jukka Maalampi,¹⁷ Fabio Mantovani,¹² Michela Marafini,²⁰ Jelena Maricic,²¹ Teresa Marrodán Undagoitia,²² William F. McDonough,²³ Lino Miramonti,⁷ Alessandro Mirizzi,²⁴ Quirin Meindl,¹ Olga Mena,²⁵ Randolph Möllenberg,¹ Rolf Nahnhauer,²⁶ Dmitry Nesterenko,¹⁰ Yuri N. Novikov,¹⁰ Guido Nuijten,²⁷ Lothar Oberauer,¹ Sandip Pakvasa,²⁸ Sergio Palomares-Ruiz,²⁹ Marco Pallavicini,³⁰ Silvia Pascoli,³¹ Thomas Patzak,²⁰ Juha Peltoniemi,³² Walter Potzel,¹ Tomi Räihä,¹¹ Georg G. Raffelt,³³ Gioacchino Ranucci,⁷ Soebur Razzaque,³⁴ Kari Rummukainen,³⁵ Juho Sarkamo,¹¹ Valerij Sinev,⁴ Christian Spiering,²⁶ Achim Stahl,³⁶ Felicitas Thorne,¹ Marc Tippmann,¹ Alessandra Tonazzo,²⁰ Wladyslaw H. Trzaska,¹⁷ John D. Vergados,³⁷ Christopher Wiebusch,³⁶ and Jürgen Winter¹

¹Physik-Department, Technische Universität München, Germany

²Institut für Experimentalphysik, Universität Hamburg, Germany

³Department of Physics, Ohio State University, Columbus, OH, USA ⁴Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

⁵Institut für Kernphysik, Karlsruhe Institute of Technology KIT, Germany

⁶Harish-Chandra Research Institute, Allahabad, India

Backup Slides

SN neutrinos in LENA

- v_e from neutronisation burst
- $v\overline{v}$ pairs of all flavors from protoneutronstar cooling

For galactic SN (10kpc, $8M_{\odot}$, $<E_{\gamma}>=14MeV$): ca. 2x10⁴ events in 44kt target

Channel		Events	Threshold (MeV)	Spectrum
$\overline{\nu}_{\rm e}{\rm p} ightarrow{\rm n}{\rm e}^{\scriptscriptstyle +}$	СС	1.3x10 ⁴	* 1.8	✓
$\nu_e^{12}C \rightarrow {}^{12}N e^{-12}N e^{-12}$	СС	3.4x10 ²	17.3	(🗸)
$v_e^{12}C \rightarrow^{12}B e^+$	СС	1.8x10 ²	13.4	(🗸)
$\nu {}^{12}C \rightarrow {}^{12}C^* \nu$	NC	1.0x10 ³	15.1	×
$\nu p \rightarrow p \nu$	NC	2.6x10 ³	1.0	\checkmark
$\nu e^{-} \rightarrow e^{-} \nu$	NC CC	6.2x10 ²	0.2	\checkmark

*roughly 2x the rate in Super-Kamiokande

Expected signal from SN neutrinos

Signal above 10 MeV

- dominated by inverse beta decay
- coincidence signals allow to tag IBD and ¹²C-CC reactions
- ¹²C+v_e/v
 _e separation by simultaneous fit to energy and decay spectra
- γ-peak from ¹²C-NC reaction
- → LENA can resolve the different interaction channels!

Signal at 1 MeV

- dominated by v-proton scattering
- sensitive on threshold by ¹⁴C-decay
- extract ve-scattering by PSD?
- → vp-scattering unique feature of liquid scintillator detectors

Expected physics output from SN neutrinos

Astrophysics

- detailed information on core-collapse (v energy, flavor, time-profile)
 - initial neutronization burst
 - features of cooling phase
 - explosion shock-wave
- signals from dim SNe, black hole formation
- IBD: pointing to obscured SNe
- SNEWS, grav. wave exp.

Neutrino physics

- neutrino mass hierarchy by
 - neutronization burst
 - resonant flavor conversion in stellar envelope
 - Earth matter effect
 - signal rise time
- collective oscillations
- $v_{\rho} \rightarrow \overline{v}_{\rho}$ conversion
- unexpected effects ...

Backgrounds for DSN search in LENA

Detection via Inverse Beta Decay

 \bar{v}_{e} +p \rightarrow n+e⁺

neutron tagging allows discrimination of most single-event bg limiting the detection in SK

Remaining Background Sources

- \blacksquare reactor and atmospheric $\overline{\nu}_{e}{}^{\prime}s$
- cosmogenic backgrounds:
 - fast neutrons and $^{9}\text{Li:}~\mu$ veto
 - atmospheric v NC events: PSD

Scientific Gain

- first detection of DSN
- average SNv spectrum
- fraction of dim/failed SNe (?)

Expected events: ~10² in 10 yrs (in energy window from 10-25MeV

~2x of GADZOOKS! expectation

DSNB atmospheric ν NC background

- Cosmogenic produced neutrons no problem if d > 4000 mwe < 0.2 events / year
- Cosmogenic produced beta-neutron emitter (e.g. ⁹Li) no problem if d > 4000 mwe
 < 0.1 events / year
 - Atmospheric neutrino CC reaction

٠

- 10 < E / MeV < 30
- Atmospheric neutrino NC reaction neutron production data from KamLAND

n-scattering TOF exp. at MLL (Garching)

severe bg: reduction by pulse shape discrimination and/or statistical subtraction ? Laboratory experiments indicate that a strong bg-reduction can be achieved !

Preliminary results: Monte-Carlo simulation based on recent results of PSD parameter on LAB scintillators

Indirect light dark matter search

- low background level in IBD allows to search for \overline{v}_e from $\chi \overline{\chi} \rightarrow v_e \overline{v}_e$
- signature for annihilation: peak at $E = m_{\chi}$, with $m_{\chi} = 10 \dots 100$ MeV.

Solar neutrino signal in LENA

Gain compared to Borexino

 γ -background for pep-v search pata (1.2 - 2.8 MeV)Bulk: vs, ¹¹C, ¹⁰C Ext. γ Best Fit 10^{4} 10^{4}

Borexino \rightarrow LENA

- fiducial volume: >300 times larger
- 4000 mwe at Pyhäsalmi → cosmic backgrounds reduced by factor 3-5
- Iower external γ background

Physics programme for solar neutrinoss

Astrophysics

- contribution of CNO cycle to solar fusion rate
- metallicity of solar core
- presence of time variations in solar neutrino flux (10⁻³ level)
 → helioseismic g-modes ...

Neutrino physics

- precision measurement of
 P_{ee} in the matter-vacuum transition region (1-5 MeV)
 by pep and ⁸B (CC) on ¹³C
 → non-standard interactions etc.
- $v_e \rightarrow \overline{v}_e$ conversion

The Earth heat flow problem

From surface measurement, the thermal power is determined to 47 ± 2 TW. Models determine the heat from radioactive decays of U, Th, K to 12-30 TW.

Is there a difference? And what accounts for the deficit?

Detection of geoneutrinos in LENA

IBD threshold of 1.8 MeV (only LS)

 $\overline{\nu}_{e}$ by U/Th decay chains

At Pyhäsalmi

expected geo-v rate

2x10³ yr⁻¹

■ reactor-v background 7X10²

Scientific Gain

- contribution of U/Th decays to Earth's total heat flow → 1%
- relative ratio of U/Th \rightarrow 5% → geochemistry: U/Th = 3.5 ... 4
- with several detectors at different sites: disentangle oceanic/continental crust
- test for hypothetical georeactor

Reactor neutrinos

Possible objectives

- Precision measurement of solar oscillation parameters, esp. Δm_{12}^2 @ Fréjus: $\sin^2 2\theta_{12}$ ~ 10% (3 σ) Δm_{12}^2 ~ 1% (3**o**)
- Neutrino mass hierarchy by $\Delta m_{13}^2 - \Delta m_{23}^2$ interference in P_{ee}(x) (but optimum distance is 60 km)

Proton decay into $K^{\scriptscriptstyle +}\overline{\nu}$

coincidence: $\tau_{\rm K}$ = 13 ns energy: 250-450 MeV modified by Fermi motion for ¹²C

Background

atmospheric v's rejected by rise time cut: **efficiency 0.67** hadronic channels: <1.2 per 1Mt yr (producing kaons) @ 4kmwe

Current SK limit: 2.3x10³³ yrs

Limit for LENA if no event is observed in 10yrs (0.5 Mt·yrs):

 $\tau_{\rm p}$ > 4x10³⁴ yrs (90%C.L.)

Cosmic vs. reactor background

Geoneutrinos and reactor background

Event rates for 44 kt years of exposure.

Neutrino oscillometry

Concept: Short-baseline oscillation experiments using neutrinos from radioactive sources.

Radioactive neutrino sources

- v_e (monoenergetic) from EC sources: ⁵¹Cr, ³⁷Ar
- $\overline{\nu}_{\rm e}$ (E=1.8-2.3MeV) from ⁹⁰Sr (⁹⁰Y), ¹⁴⁴Ce
- \blacksquare large activity necessary for ν_e : 1MCi or more

Oscillation baseline

- for $\Delta m_{32}^2(\theta_{13})$: 750m for ⁵¹Cr (747keV)
- for Δm_{41}^2 (sterile): 1.3m

Scientific objectives

- check $P_{ee}(r)$ if θ_{13} is relatively large
- \blacksquare check CPT for ν and $\overline{\nu}$
- very sensitive in sterile v searches (sin²2 $\theta \approx 10^{-3}$)

