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Introduction: The Standard Model
Particle physics is based on an experimentally extremely successful theory

the Standard Model (SM)

Properties of the Standard Model:

[_sdectrum:
e matter fields: (spin = 1/2)
3 families of quarks and leptons

with measured masses and couplings,

e gauge bosons: (spin = 1)

gluons, W=, Z% ~ of gauge group
8

(H)

Gsy =SU3) x SUR2) xU(l)y — SU(3) X U(1)em

e Higgs field H (spin = 0)
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[_edperimental situation:

e good qualitative/quantitative agreement in SU(3) sector

e impressive quantitative agreement in SU(2) x U(1) sector

(electroweak precision data)
e no direct observation of Higgs boson yet

e observation of neutrino masses
(first modification of SM)

[_mlathematical framework:

local quantum field theory (QFT)

with spontaneously broken non-Abelian gauge symmetry
e clectroweak precision data test ‘rules’ of QFT

e gauge symmetry ensures consistency of quantization

and fixes/constrains the couplings
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SM leaves a number of open questions:

what determines (G5, and the spectrum of particles 7
many (19) free parameters: masses, couplings, ...
what sets the weak scale 7

what keeps it stable 7

gravity cannot be consistently turned on

(general relativity is not a renormalizable quantum field theory)

= belief:

Standard Model is only an ‘effective’ theory above some scale [ < 10~ 8m

Below this scale: new phenomena and new theory.
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The theory of gravity: General Relativity

[ GR is the field theory of the gravitational interaction

e the gravitational field is the metric tensor g, of space-time

e energy and momentum act as sources of the gravitational field

e Einstein’s field equations

1 _
R, — §gWR — Ag, = 8nGe 4TW

e measured constants:

GG: Newton's constant , A: cosmological constant

[_GR successfully governs cosmology and astrophysics

= Standard Model of Cosmology
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GR leaves a number of open questions:

what sets the value of G — why is gravitational interaction so weak compared to
strong & electro-weak interactions?

what sets the value of A — why is it so small ?

physics of singularities (Big Bang and black holes) 7

quantum theory of gravity ?

= belief: GR is not a fundamental theory

= Theories “beyond” SM and GR:
e Technicolor
e Supersymmetry/Supergravity
e Grand Unified Theories

e String Theory
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Supersymmetry [Wess, Zumino]

[ symmetry among fermions and bosons;

[_gédneralization of Poincaré-algebra

{QI7QTJ} — /yup,ll(s[!]? I7J:17"'7N7

() is generator of supersymmetry transformation.

[_Ploperties:

e fermions & bosons sit in the same multiplet
= enlargement of particle spectrum;

quantum corrections are “tamed”
= light Higgs boson is ‘natural’ and predicted,

= strongly coupled QFT can be better controlled.
consistent with electro-weak precision data;
dark matter candidate: LSP

gauge coupling unification

amburg, April 2003 Jan Louis




(super-) GUTs: [Georgi,Glashow]

[_GEneralizes the gauge principle of the SM:

e all interactions are unified in one gauge group

Gaur D Gsm =SU3)@SU(2) @ U(1),
(e.g. GGUT = SU(5), 80(10), E6)

e quarks and leptons are in the same multiplet

necessary condition: unification of gauge couplings

= supersymmetric GUTs at Maur ~ 3-100GeV

[_Ploperties:
e predicts decay of the proton = instability of matter

e suggests light neutrinos
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Supergravity

Supergravity = gauged (local) supersymmetry

[nédcessary to introduce fermionic gauge field, the gravitino (s = 3/2)
forms together with graviton a supermultiplet

= local supersymmetry only exists when gravity is turned on

[Iflgravitino (& Higgs) exist all spins 0 < s < 2 occur

[ sdpersymmetric SM with soft supersymmetry breaking

can be embedded into spontaneously broken supergravity

[__UN-finiteness of supergravity not settled but not expected
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At what scale is a quantum gravity necessary?

h
)\Compton — MC ~ RSchwarz

Planck mass: Mpp = % ~ 107 %¢

Planck energy: Epr = c*Mpr ~ 10%YGeV

Planck length: [p; = % ~ 1073m

Planck time: tpr, =lpr/c~ 5-107%s

relevant in
e history of the (very) early universe ~ 10~43 sec after big bang

e physics of black holes of mass M ~ Mpy,

conjecture:

at length scales
hG

I=lpp=\|—F ~ 107%°m
c

a completely new concept is necessary to describe nature.
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(Perturbative) String Theory

[Veneziano, Nambu, Goto, Susskind, ...

|ldea: point-like objects — strings

O T

Strings move in D-dimensional Minkowskian background.

(perturbative) string theory is quantum theory of extended objects (strings).
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Quantum excitations:

e finitely many massless excitations L:
s =2 graviton
s =3/2 gravitino
s=1 gauge bosons
s=1/2 fermions (quarks & leptons)
s=10 Higgs, ...

e infinitely many massive excitations H

Mwn-MS

Mg = characteristic scale of string theory (tension of the string)

= soft UV behavior
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Interactions:

gs = e~ '?) is coupling constant, ¢ is scalar field (dilaton)
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scattering amplitudes:

quantization via “Feynman-diagrams”

scattering amplitude: A= Z Al g2t2m
n=0
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Results:

[_sdectrum contains non-Abelian gauge theory
with families of chiral fermions coupled to gravity

[_fdr scattering processes with p < Mg:

string theory "<° QFT & GR

Astring / AQFT,GR

(With Mg ~ Mpl)

= QFT & GR are low energy limit of string theory.

[_gl is free parameter and one can choose g, < 1
= perturbative evaluation of A possible

[amplitudes A are UV-finite -

= string theory is candidate for perturbative quantum gravity
coupled to non-Abelian gauge theory

amburg, April 2003 Jan Louis




16

Properties

[_sdectrum is supersymmetric

— necessary for consistency | 7

[_uhitarity of scattering amplitudes =

o D=10: 5 different string theories:
lIA, 1IB, I, Het. Eg x Eg, Het. SO(32)

o D < 10: families of theories

geometrical compactification:
M0 — (D) g [ (10=D)

consistency demands K = Calabi-Yau manifold

holonomy group of K < number of supersymmetries

— what chooses D

— what chooses K
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Contact with SM: The effective action

Integrating out the heavy modes H results in the low energy effective action L. (L)

of the light modes L

for p? <

amburg, April 2003
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Problems

[_sdpersymmetry unbroken @

[qiiarks, leptons and Higgs massless, SU(2) x U(1) unbroken
— what generates small masses ?

= what generates the hierarchy ﬂ”;—lfl ~ 10717

[_effective potential V' has flat directions (moduli T')
= continuous vacuum degeneracy parameterized by (7')

[ Ylkawa Y and gauge couplings g dynamically determined

Y=Y({T)), g=g(T))

but free parameters.

hope: cured by non-perturbative effects.
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Non-perturbative Aspects of String Theory

[Hull, Townsend, Witten, ...
conjecture:

different string theories are dual description of one quantum theory:

perturbative spectrum A < non- perturbative spectrum B

perturbative spectrum B < non- perturbative spectrum A

difficult to prove but successful checks on ‘protected’ couplings [D

(such couplings do exist in supersymmetric theories)

Non-perturbative states of string theory: D-branes
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[Polchinski]

open string with Dirichlet boundary condition define hyperplane

[ DIBranes are dynamical objects of string theory

[ DIBranes are non-perturbative states of string theory (tension ~ g; 1)

[_stking theory is not a theory of only strings but also

describes higher-dimensional objects — Branes
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M-Theory

Generalization: All string theories are perturbative limits of one quantum theory

What is M-theory

Suggestion: theory of D-particles [Banks, Fischler, Shenker, Susskind].

= space-time becomes non-commutative
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Perspectives — where do we go from here?

[_stking theory as a fundamental theory
e conceptual

e Particle Physics

e GR/cosmology

[_stking theory as a technical tool
o QFT

e Mathematics
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string theory as a fundamental theory

e conceptual
— define and understand M-theory or

— define and understand non-perturbative string theory

e Particle Physics
— study compactifications of string theory and their non-perturbative properties

— is our universe a D-brane? = study Brane-World scenarios

e GR/Cosmology

study time-dependent (cosmological) string backgrounds

develop string scenarios for the Big Bang
embed de-Sitter backgrounds in string theory
study quantum Black Hole physics
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string theory as a technical tool

CQFT
e use string theory to organize the Feynman perturbation theory

[Bern, Dixon, Kosower]

e use string theory as a regulator = lessons for supersymmetric QFT

e learn about strongly coupled (supersymmetric) QFTs = (s)QCD

— AdS/CFT correspondence (N = 4)
— Seiberg/Witten (N = 2)
— Dijkgraaf/Vafa (V. = 1)

and develop new tools
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[_stking theory and Mathematics

e point-like particle = probe of continuous space-time geometry

= relation with Riemannian geometry [Einstein,Hilbert]

e string as probe: sees coarser structure

= development of quantum geometry [Kontsevich, Manin, ...

surprising results:

— mirror symmetry in Calabi-Yau manifolds
— computation of number of holomorphic curves on Calabi-Yau manifolds

— development of quantum cohomology

Jan Louis
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Summary

string theory unifies all interactions and provides perturbative quantum gravity.

qualitative agreement with generalizations of the Standard Model but no
quantitative agreement yet.

biggest problems:

— hierarchical supersymmetry breaking,
— determination of the ground state,
— cosmological constant.

non-perturbative properties at least partially under control.

phenomenological implications are being investigated.
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