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ABSTRACT

We consider one-loop corrections �

a

to inverse gauge couplings g

�2

a

in su-

persymmetric vacua of the heterotic string. The form of these corrections plays

an important role in scenarios for dynamical supersymmetry breaking in string

theory. Speci�cally, we calculate the exact functional dependence of �

a

(U) on

any untwisted modulus �eld U of an orbifold vacuum; it has the universal form

�

a

(U;

�

U) = A

a

� log(j�(U)j

4

� ImU) + const:, where A

a

are easily computable

rational constants. The dependence is nontrivial (A

a

6= 0) only if some sectors of

the orbifold Hilbert space have precisely N = 2 spacetime supersymmetry. The

expression for �

a

has an expected invariance under modular transformations of

U , since these are symmetries of the orbifold vacuum state. However, �

a

is not

the real part of a holomorphic function, in seeming contradiction with the ex-

istence of a supersymmetric e�ective Lagrangian. The apparent paradox is an

infrared problem, and can occur not just in string theory but in renormalizable

supersymmetric �eld theories as well. We show how the paradox is resolved in

the �eld theory case and argue that the same resolution applies also to the string

theory case.
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1. Introduction

Heterotic string theory

[1]

is currently the best candidate for a fundamental

theory of all particle interactions. The �rst step in deducing phenomenology

from string theory is to derive an e�ective four-dimensional quantum �eld theory

for particles that are light compared to the string scale. This theory describes

particle interactions at energies just below the string scale, but once it has been

obtained from string theory, ordinary �eld-theoretical techniques can be used to

deduce an e�ective theory valid at much lower (e.g. electroweak) energies. At

present, there is a huge number of candidate vacua of string theory, each leading

to a somewhat di�erent e�ective �eld theory; this sad state of a�airs necessitates

a general treatment of such theories.

Consider an e�ective (Euclidean) Lagrangian for a general local �eld theory

in four dimensions. Bosonic terms with at most two space-time derivatives can

be summarized in the following formula:

L

bose

e�

=

R

2�

2

+

�

1

4g

2

(�)

�

ab

F

a

��

F

b��

+

i�

ab

(�)

32�

2

F

a

��

~

F

b��

+

1

2

G

ij

(�)D

�

�

i

D

�

�

j

+V (�):

(1:1)

Here V is the scalar potential, G

ij

(�) is the metric on a Riemannian manifold

spanned by the scalar �elds �

i

, and the matrices g

�2

ab

(�) and �

ab

(�) are gener-

alized scalar-�eld-dependent inverse gauge couplings and gauge vacuum angles,

respectively. If the e�ective four-dimensional �eld theory is N = 1 supersym-

metric, then all fermionic terms in its Lagrangian are completely determined by

the bosonic terms (1.1), and the bosonic terms themselves have to obey certain

constraints. In particular, the manifold spanned by the scalar �elds must be

K�ahler, with an appropriate metric and complex coordinates �

i

and �

{

,

?

and the

? In this article we call scalar �elds chiral or anti-chiral according to the space-time chirality

of their fermionic superpartners; in our notations we distinguish them by using �

i

for the

former and �

{

for the latter. Lower-case �

i

are used to denote any scalar �eld in the

e�ective four-dimensional theory | chiral, anti-chiral or mixed.
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complex functions

f

ab

(�)

def

==

�

1

g

2

(�)

�

ab

�

i�

ab

(�)

8�

2

(1:2)

must be holomorphic functions of the coordinates �.

[2]

In a generic d = 4; N = 1

supergravity there is only one other restriction on the matrix-valued function

f

ab

(�) | it has to be gauge covariant. The latter requirement implies that if we

limit our attention to the dependence of f

ab

on scalar �elds that are neutral with

respect to the gauge symmetry, we can write f

ab

= �

ab

� f

a

, with equal f

a

for all

gauge bosons a that belong to the same simple gauge group.

In this article we focus on N = 1 and N = 2 supersymmetric string vacua and

investigate the dependence of f

a

on the moduli �elds | massless gauge-neutral

scalar �elds whose e�ective potential is classically and perturbatively at. (They

are called moduli �elds because of their relation to the continuous parameters,

or moduli, of a family of classical string vacua.) At the tree level of the string

theory f

a

depend only on the four-dimensional dilaton/axion �eld S, through the

universal formula

[3�6]

f

tree

ab

(�) = k

a

�

ab

� S; (1:3)

where k

a

is the level of the appropriate Kac-Moody algebra. However, radiative

corrections to eq. (1.3) | the result of integrating out massive, charged string

states | do depend on the moduli scalars. Moduli-dependence of the one-loop

corrections f

1-loop

a

was �rst investigated in ref. [7,8]; however, that study em-

ployed a Peccei-Quinn symmetry for the moduli, which is spoiled by world-sheet

instantons. In this article we determine the exact functional dependence of f

1-loop

a

for a large class of orbifold compacti�cations of the heterotic string.

There are two basic reasons for studying the moduli-dependence of the one-

loop corrections to f

a

. First, asymptotically-free gauge couplings provide a mech-

anism for an e�ective quantum �eld theory that is weakly interacting at the string
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scale to become strongly interacting at some hierarchically lower energy scale,

typically of the order M

string

� exp

�

�8�

2

C

g

2

(M

string

)

�

, where C is an O(1) constant.

A moduli-dependent one-loop correction to the gauge coupling constant has an

O(1) e�ect on all physical quantities associated with this scale. In particular, if

an e�ective potential is generated non-perturbatively, it is automatically moduli-

dependent and thus lifts the degeneracy of string vacua corresponding to di�erent

vacuum expectation values (VEVs) of the moduli �elds.

The other reason for studying �eld dependence of the f

ab

(�) is that non-zero

derivatives @f

ab

=@�

i

lead to various non-renormalizable interactions involving

gauge bosons and their superpartners. Of particular importance are the non-

derivative interactions involving gauginos but no other fermions

[9]

L

�

= G

i�|

(�;�)

"

1

8

X

a

@f

ab

@�

i

� �

a

�

b

+ e

K=2

�

@W

@�

i

+W

@K

@�

i

�

#

�

"

1

8

X

a

@f

�

ab

@�

|

�

�

�

a

�

�

b

+ e

K=2

�

@W

�

@�

|

+W

�

@K

@�

|

�

#
(1:4)

(here K(�;�) is the K�ahler potential and W (�) is the superpotential of the

scalar �elds). When the chiral symmetry of the gauginos is spontaneously broken,

the interactions (1.4) result in an e�ective potential for the gaugino condensates




�

a

�

b

�

; combined with the non-perturbative e�ects that cause formation of the

condensates in the �rst place, this e�ective potential may lead to spontaneous

breakdown of supersymmetry.

[4;10;11]

However, in order to verify that this mecha-

nism indeed results in supersymmetry breaking rather than in runaway VEVs of

moduli scalars, one must know how the moduli enter the non-perturbative e�ec-

tive potential (comprising (1.4) as well as other terms

[12]

); obviously, knowledge

of the moduli-dependence of f

a

is indispensable in such an analysis.

Precisely because of its universality, formula (1.3) is too crude an approxi-

mation to use in a study of dynamical supersymmetry breakdown triggered by
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gaugino condensation, especially when there is no supersymmetry breaking at the

tree level of the e�ective �eld theory. In the latter case, the only known way to

stabilize the dilaton/axion VEV at a reliable weak-coupling value hReSi � 1 is to

have two or more independent gaugino condensates occurring at roughly the same

scale.

[13;14]

In such a scenario the stable value of hSi so obtained is extremely sensi-

tive to the di�erences between the f

a

's of the gauge groups involved in the gaugino

condensation. Moduli-dependence of these di�erences (which arises at the same

one-loop level as the di�erences themselves) thus leads to moduli-dependence

of all quantum e�ects in the e�ective four-dimensional theory. The question of

whether and how supersymmetry is broken in this scenario, once the dilaton VEV

is �xed, may also depend on the functional form of f

1-loop

a

(�).

[12;14;15]

At the one-loop level, the renormalized gauge couplings of the e�ective �eld

theory can be written as

16�

2

g

2

a

(�)

= k

a

�

16�

2

g

2

GUT

+ b

a

� log

M

2

GUT

�

2

+ �

a

; (1:5)

where � � M

GUT

' M

string

is the renormalization scale, g

�2

GUT

= ReS + O(1)

(cf. eq. (1.3)), and b

a

are related to the one loop �-functions via �

a

= b

a

�g

3

a

=16�

2

.

Finally, �

a

are the speci�c one-loop threshold corrections for each g

�2

a

, which we

would also like to identify as 16�

2

�Re f

1-loop

a

. Ref. [16] gives a general formula for

�

a

in terms of the spectrum of all massive states of the string theory.

?

Orbifolds

provide an example of string vacua for which the entire massive spectrum is

known exactly; moreover, all the masses can be written as analytic functions

of the moduli that preserve the orbifold nature of the vacuum (i.e., the moduli

arising from the untwisted sector of the orbifold). Therefore, for orbifolds we can

? The �-functions for some N = 1 supersymmetric string vacua were �rst calculated in

ref. [17], and for N = 2 vacua in ref. [18]; the latter reference also carried out some of the

analysis used in appendix A of this article.
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derive exact formul� for f

1-loop

a

as explicit functions of the untwisted moduli, and

this is exactly what we shall do in the next section of this article.

Speci�cally, we will show that the one-loop threshold corrections �

a

depend

non-trivially on the untwisted moduli of an N = 1 supersymmetric orbifold if and

only if the orbifold group contains a subgroup that by itself would produce an

orbifold with exactlyN = 2 space-time supersymmetry. Moreover, the functional

form of this dependence can also be obtained from studying such N = 2 orbifolds,

which are examples of six-dimensional, N = 1 supersymmetric vacua that have

been toroidally compacti�ed to four dimensions. We then consider the entire

class of such vacua and compute �

a

as functions of the moduli of the torus. To

relieve the tedium, some of the calculations are presented in appendices A and

B.

The main result of section 2 is that for any untwisted modulus U upon which

�

a

do depend non-trivially, the functional form of this dependence is given by

�

a

(U;U) = A

a

� log

�

j�(U)j

4

� ImU

�

+ U -independent terms, (1:6)

where A

a

are rational constants, computable from the massless spectrum alone.

y

Formula (1.6) has the expected invariance under modular (PSL(2;Z)) transfor-

mations of the complex U �eld, which are symmetries of the string vacuum under

consideration.

[19]

On the other hand, the e�ective g

�2

a

(U;U) obtained from (1.6)

cannot be written as the real part of a holomorphic function f

a

(U).

At �rst glance, this lack of a holomorphic e�ective f

1-loop

a

(U) appears to in-

dicate some bizarre stringy e�ect that breaks the space-time supersymmetry at

y Actually, in order to compute A

a

for an N = 1 supersymmetric orbifold we need to know

the massless spectra of related N = 2 orbifolds and not of the N = 1 orbifold itself. See

section 2.3 for details.
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the one-loop level. However, we �nd that the same problem can occur in ordi-

nary four-dimensional supersymmetric quantum �eld theories. To our knowledge

this phenomenon has not been treated in the literature, and so we devote sec-

tion 3 to a discussion of the renormalized f

1-loop

a

and their dependence on the

scalar �elds. Our main point is that in a gauge theory with massless charged

fermions, the renormalized gauge coupling is divergent in the infrared limit while

the renormalized � angle is simply not well-de�ned. On the other hand, the

infrared contributions to non-renormalizable e�ective interactions between two

gauge bosons and a neutral scalar �eld �

i

are �nite (at least at the one-loop

level); the coe�cients of these interactions can be interpreted as `e�ective deriva-

tives' of the gauge couplings g

�2

a

and �

a

angles with respect to �

i

, which we

collectively denote by f@f

a

=@�

i

g. However, there is no guarantee that these ef-

fective derivatives are integrable, that is, can be written as derivatives of some

renormalized functions f

a

(�) with respect to �

i

. We �nd that the e�ective deriva-

tives of the real parts of f

1-loop

a

are in fact integrable, and even satisfy the naive

relations

f@Re f

a

=@�

i

g(p

2

; h�i) =

@g

�2

a

(p

2

; h�i)

@ h�

i

i

(1:7)

where g

a

(p

2

) are the running gauge couplings, but the imaginary parts of f

1-loop

a

are not integrable. Supersymmetry, if present, requires that

f@f

�

a

=@�

i

g = f@f

a

=@�

{

g = 0 (1:8)

for any chiral scalar �

i

or anti-chiral �

{

; however, eqs. (1.8) and (1.7) can be sat-

is�ed without the renormalized g

�2

a

(h�i) being the real parts of some holomorphic

functions of VEVs of the chiral �elds �.

Most of the content of section 3 is �eld theoretical. We discuss the general

theory behind eqs. (1.7) and (1.8) and the possibility of non-holomorphic depen-

8



dence of the e�ective gauge couplings on the chiral scalars. We also give a sim-

ple example of a renormalizable gauge theory in which the `e�ective derivatives'

f@�

a

=@�

i

g are not integrable and the dependence of g

�2

2

on the chiral scalars is

not holomorphic. However, in the last subsection of section 3 we go back to string

theory and calculate f@f

a

=@�

i

g

1-loop

for supersymmetric orbifolds directly from

the string S-matrix elements. The results of this calculation explicitly verify that

eqs. (1.7) and (1.8) hold true in the orbifold case, and therefore that the non-

integrability of f@�

a

=@�

i

g is the right explanation of the non-holomorphicity of

eq. (1.6).

Finally, in section 4 we summarize our results and compare them to previ-

ous calculations of loop corrections to the gauge couplings in four-dimensional

supersymmetric vacua of the heterotic string.

2. Threshold Corrections for Orbifolds and N = 2 String Vacua

2.1. Threshold Corrections for Orbifolds

After all these preliminaries we are now ready to calculate the one-string-loop

threshold corrections �

a

for the orbifold vacua. Our starting point is the general

formula of ref. [16]: for any four-dimensional, tachyon-free vacua of the heterotic

string,

�

a

=

Z

�

d

2

�

�

2

(B

a

(�; ��) � b

a

) ; (2:1)

where

B

a

(�; ��) = j�(� )j

�4

�

X

even s

(�)

s

1

+s

2

dZ

	

(s; �� )

2�i d��

� Tr

s

1

�

Q

2

a

� (�)

s

2

F

q

H�

11

12

�q

�

H�

3

8

�

int

(2:2)
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and

b

a

� lim

�

2

!1

B

a

= �

11

6

tr

V

(Q

2

a

) +

1

3

tr

F

(Q

2

a

) +

1

12

tr

S

(Q

2

a

) (2:3)

Here � = �

1

+i�

2

is the modulus of the world-sheet torus, and is integrated over the

usual fundamental domain � = f�

2

> 0; j�

1

j <

1

2

; j� j > 1g; q = e

2�i�

and �(� ) =

q

1=24

Q

1

n=1

(1 � q

n

); Q

a

measures the charge under some generator in the a

th

factor of the gauge group; indices s

1

and s

2

each take values 0 & 1 corresponding

to the Neveu-Schwarz and Ramond boundary conditions on the world sheet and

the restriction `even s' excludes the Ramond-Ramond case (s

1

; s

2

) = (1; 1). The

derivation of eqs. (2.1) { (2.3) used the fact that every four-dimensional string

vacuum is composed of two pieces: free world-sheet bosons X

�

and fermions

	

�

, which constitute the spacetime degrees of freedom (� = 0; 1; 2; 3), and some

internal superconformal �eld theory (SCFT) of central charge (c; �c) = (22; 9).

The trace in eq. (2.2) is taken over this internal SCFT, whereas the factors j�j

�4

and Z

	

denote the light-cone gauge partition functions ofX

�

and 	

�

respectively.

Z

	

, which is equivalently the partition function of one complex free fermion, is

given by

Z

	

(s; �� ) =

1

�(�� )

�

8

>

>

>

>

<

>

>

>

>

:

#

3

(�� ) for s = (0; 0),

#

4

(�� ) for s = (0; 1),

#

2

(�� ) for s = (1; 0),

0 for s = (1; 1).

(2:4)

Actually, formula (2.1) only has physical import for the di�erence

�

a

1

k

a

1

�

�

a

2

k

a

1

between threshold corrections for two di�erent gauge group factors, because an

uncalculated constant (denoted by Y in ref. [16]) appears in the relation between

the bare string coupling constant and g

GUT

as de�ned in eq. (1.5). This caveat

will play a role below.

The trace over the internal sector in eq. (2.2) is model-dependent and in

general cannot be simpli�ed further. However, great simpli�cation is possible for

10



orbifold vacua, which can be described by starting from a ten-dimensional vacuum

of the heterotic string in which six out of ten space-time dimensions form a at

torus T

6

, and then dividing the world-sheet conformal theory describing such

a vacuum by a discrete symmetry group G. In order to preserve an N = 1

supersymmetry in space-time,G should be a subgroup of SU(3). Also, G should

be an isometry of the T

6

; given the action of G, this is a constraint on the shape

of the torus, i.e., on the constant background metric and antisymmetric tensor

�elds on the T

6

; the parameters describing the shape of the T

6

that are not �xed

by this constraint constitute the untwisted moduli of the orbifold. The trace in

eq. (2.2) decomposes into sectors with boundary conditions (g; h) along the two

cycles of the world-sheet torus, according to

Tr

s

1

�

Q

2

a

� (�)

s

2

F

q

H�

11

12

�q

�

H�

3

8

�

int

=

1

jGj

X

g;h2G

gh=hg

Tr

(g;s

1

)

�

Q

2

a

� h � (�)

s

2

F

q

H�

11

12

�q

�

H�

3

8

�

:

(2:5)

Each (g; h) sector preserves a certain amount of four-dimensional supersymmetry,

either N = 4, N = 2 or N = 1. The only N = 4 supersymmetric sector is the

completely untwisted sector (g = h = 1), which also represents compacti�cation

on the torus T

6

. This sector gives a vanishing contribution to both the beta

functions

[20]

and the �

a

.

[16]

(The latter result holds because the spin-structure-

dependent part of the trace in eq. (2.5) for g = h = 1 is just the partition function

Z

3

	

(s; �� ) of six real (three complex) untwisted world-sheet fermions; hence the

contribution to B

a

is proportional to

X

even s

(�)

s

1

+s

2

Z

3

	

(s; ��) �

d

d��

Z

	

(s; ��) =

1

4

d

d��

X

even s

(�)

s

1

+s

2

Z

4

	

(s; �� ) = 0 ; (2:6)

where the last equation uses the identity #

4

3

�#

4

4

�#

4

2

= 0 which is also responsible

for the vanishing of the partition function.)
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Since g and h commute, we can choose complex coordinates on the torus T

6

that diagonalize the action of g and h. We refer to these three complex directions

as `complex planes'. Each (g; h) sector is also characterized by the number of

complex planes that are not rotated by the action of g and h on T

6

: All 3 planes

are �xed for the N = 4 sector, 1 is �xed in the N = 2 sectors, and none is

�xed in the N = 1 sectors. (No g 2 SU(3) can �x exactly 2 of the 3 planes.)

As argued in ref. [16], the sectors that rotate all planes are not sensitive to the

geometry of the torus. Indeed, the charges Q

a

of string states do not depend on

the moduli,

?

while the values of H and

�

H depend on the untwisted moduli only

for states with non-trivial six-momenta and/or winding numbers. In a sector

where g rotates all three planes, the (twisted) states have neither six-momenta

nor winding numbers. In a sector where g rotates only two planes, states do have

momenta and winding numbers associated with the third plane, but if that third

plane is rotated by h, then all states with non-trivial momenta and/or winding

numbers are projected out of the trace. Only the sectors in which a plane is �xed

by g and h simultaneously are sensitive to untwisted moduli. Thus while both

b

a

and �

a

receive contributions from N = 1 and N = 2 sectors, only the N = 2

sectors provide for moduli-dependence of the threshold corrections. In particular,

for orbifolds with no N = 2 sectors, such as those with G = Z

3

or Z

7

, �

a

are

completely independent of the untwisted moduli.

Let us focus on an N = 2 supersymmetric (g; h) sector, or more precisely an

orbit of such sectors under the action of the modular group PSL(2;Z) on � . All

(g; h) in such an orbit act on the three complex planes in the following way:

g = diag(�

g

; �

�

g

; 1); h = diag(�

h

; �

�

h

; 1); (2:7)

where the phases �

g

; �

h

are not simultaneously equal to 1. (As an example

? This is true not only for the untwisted moduli of an orbifold, but for all moduli of any

heterotic string vacuum with exactly N = 1 spacetime supersymmetry.

[21]
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consider the Z

4

orbifold, where � = (i; i;�1) generates the Z

4

. It contains an

N=2 orbit consisting of (g; h) = (1; �

2

); (�

2

; 1); (�

2

; �

2

).) We now require for

simplicity that T

6

= T

4

� T

2

, where T

2

refers to the third complex plane in

eq. (2.7); also, if any translations (shifts) of T

6

accompany g and h, they must

not a�ect T

2

.

y

Otherwise we allow for arbitrary action of G, on the E

8

� E

8

or

Spin(32)=Z

2

current algebra and even on the torus T

4

. Under these conditions

the contribution of the N = 2 supersymmetric (g; h) orbit is equivalent to that of

a toroidal compacti�cation (on T

2

) of a vacuum with N = 1 supersymmetry in

six dimensions. Therefore we now consider one-loop gauge-coupling corrections

for such vacua.

2.2. Threshold Corrections for Toroidal Compactifications of

Six-dimensional Theories

In this subsection we study one-string-loop contributions to g

�2

a

for all four-

dimensional N = 2 supersymmetric vacua that are toroidal compacti�cations of

six-dimensionalN = 1 supersymmetric vacua. The previous discussion motivates

our interest in these vacua; however, we stress that the results in this subsection

apply to arbitrary six-dimensional vacua, not just orbifolds. In ref. [18] it was

shown that the �-function for such N = 2 supersymmetric theories can be ex-

tracted from an index calculation. However, the same analysis can also be used

to determine the threshold e�ects. For completeness and consistency with our

notation we repeat the necessary steps in appendix A, where we �nd that B

a

,

de�ned in eq. (2.2), is given by

B

a

(�; �� ) =

^

Z

torus

(�; ��) � C

a

(� ) : (2:8)

y It is possible to relax these conditions, but parts of the analysis and the end result then

become signi�cantly more complicated.
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Here the factor

^

Z

torus

(�; �� ) �

X

(p

L

;p

R

)2�

2;2

q

p

2

L

=2

�q

p

2

R

=2

(2:9)

is contributed by the zero modes of the two toroidal dimensions X

I

, while the

factor C

a

(� ), which accounts for all other string degrees of freedom, is a holomor-

phic function of � . �

2;2

is an even self-dual (2,2)-dimensional Lorentzian lattice

to be described below.

Now consider the behavior of B

a

(�; �� ) under modular transformations of the

world sheet. In ref. [16] �

2

� B

a

(�; �� ) was derived from a regulated two-point cor-

relation function on the world sheet. The correlation function of the Kac-Moody

currents involved| hJ

a

(�) � J

a

(0)i| is modular invariant, but the regulator that

removes the double pole of this correlation function at z ! 0 is not. Consequently,

�

2

� B

a

is not quite modular invariant; modular anomalies of this kind have been

discussed extensively in refs. [22], [23] and [18], though perhaps with a slightly dif-

ferent emphasis. On the other hand, the regulator term is proportional to k

a

and

is otherwise independent of the choice of a gauge group factor a; therefore, the

di�erences

�

2

k

a

1

B

a

1

�

�

2

k

a

2

B

a

2

are proportional to unregulated and hence modular-

invariant correlation functions




k

�1

a

1

J

a

1

(�)J

a

1

(0)� k

�1

a

2

J

a

2

(�)J

a

2

(0)

�

and are mod-

ular invariant themselves.

Finally, consider the modular properties of C

a

(� ). Since �

2

�

^

Z

torus

(�; ��)

is manifestly modular invariant, it follows from eq. (2.8) that the di�erences

k

�1

a

1

C

a

1

(� )� k

�1

a

2

C

a

2

(� ) are modular invariant too. On the other hand, these dif-

ferences are holomorphic functions of � and are no more singular than q

0

as

q ! 0 (i.e., � ! i1) | there is no q

�1

term because the SL(2;C)-invariant

vacuum has Q

a

= 0. Under these circumstances, the theory of modular forms

requires these functions to be constants,

[24]

which by eq. (2.3) must be equal to

b

a

1

k

a

1

�

b

a

2

k

a

1

(note that

^

Z

torus

(� = i1) = 1). As we already mentioned, only the

14



di�erences

�

a

1

k

a

1

�

�

a

2

k

a

2

are computed by eq. (2.1) in any case, so for the case of a

six-dimensional supersymmetric string vacuum compacti�ed on T

2

that equation

reduces to

�

a

= b

a

�

Z

�

d

2

�

�

2

�

^

Z

torus

(�; ��) � 1

�

: (2:10)

An immediate corollary of formula (2.10) is that �

a

does not depend on any

of the moduli of the (c; �c) = (20; 6) SCFT, but only on the moduli of T

2

. This is

consistent with the N = 2 supersymmetry in four space-time dimensions, which

allows gauge couplings to depend on the scalars that belong to vector multiplets

but not on the scalars belonging to hypermultiplets.

[25]

Moduli of the �c = 6

SCFT give rise to massless scalar supermultiplets in six spacetime dimensions,

which under further compacti�cation on T

2

yield massless hypermultiplets of the

N = 2;D = 4 supersymmetry. On the other hand, the moduli of T

2

belong

to vector multiplets of the N = 2 supersymmetry; their vector partners are

generated by the two world-sheet currents @X

I

.

The dependence of

^

Z

torus

and hence of �

a

on the geometry of the two-torus

is implicit in the de�nition of �

2;2

. Given a constant background metric G

IJ

(with inverse G

IJ

) and a constant antisymmetric tensor B

IJ

on T

2

, the lattice

vectors (p

L

; p

R

) are given by

[26]

p

I

L;R

= �n

I

+

1

2

G

IJ

m

J

�G

IJ

B

JK

n

K

; m

I

; n

I

2 Z; (2:11)

and p

2

L;R

� p

I

L;R

G

IJ

p

J

L;R

. (We have set �

0

=

1

2

.) Following ref. [19], we group

the four real degrees of freedom in G

IJ

= G

JI

and B

IJ

= b�

IJ

into two complex

�elds T and U ,

T = T

1

+ iT

2

= 2

�

b+ i

p

detG

�

; U = U

1

+ iU

2

=

�

G

12

+ i

p

detG

�

=G

11

:

(2:12)

Note that T is a (1,1) form for the orbifold T

6

=G, while U is a (1,2) form. In

15



terms of T and U ,

^

Z

torus

(�; T; U) =

X

m

1;2

;n

1;2

2Z

e

2�i�(m

1

n

1

+m

2

n

2

)

� (2:13)

� exp

�

�

��

2

T

2

U

2

�

�

�

TUn

2

+ Tn

1

� Um

1

+m

2

�

�

2

�

:

At this point we can write an explicit formula for the one-loop threshold

corrections �

a

by simply substituting eq. (2.13) into eq. (2.10) and calculating

the integral. The integral is performed in appendix B; the result is

�

a

(T; T ; U; U) = �b

a

� log

�

8�e

1�

E

3

p

3

� T

2

j�(T )j

4

� U

2

j�(U)j

4

�

(2:14)

(

E

is the Euler-Mascheroni constant). Note that besides its obvious symmetry

with respect to an exchange of the two complex moduli of the torus, eq. (2.14)

is also invariant under (separate) PSL(2;Z) modular transformations of T and

of U .

?

The latter invariance manifests itself via the modular properties of the

� function and makes eq. (2.14) consistent with the identi�cation of the moduli

space of the toroidal compacti�cation as

[19]

�

SU(1; 1)=U(1)

�

PSL(2;Z)

�

�

SU(1; 1)=U(1)

�

PSL(2;Z)

: (2:15)

Another noteworthy feature of the formula (2.14) for toroidal compacti-

�cations of supersymmetric six-dimensional string vacua is that it gives the

same ratio �

a

(T;U)=b

a

for all gauge couplings a in the four-dimensional the-

ory. Therefore, we can completely absorb the speci�c threshold corrections �

a

? Both symmetries are shared by the partition function (2.13); in fact, �

2

^

Z

torus

(�; T; U ) is

invariant under separate PSL(2;Z) modular transformations of T , of U and of � and

under any permutations of � , T and U .

[19]
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in the formula (1.5) into a rede�nition of M

GUT

: If we replace the de�nition

[16]

M

2

GUT

� e

1�

E

=6

p

3��

0

with a new de�nition

~

M

GUT

�

1

4�

p

�

0

�

1

p

T

2

j�(T )j

2

�

1

p

U

2

j�(U)j

2

; (2:16)

then formula (1.5) becomes

16�

2

g

2

a

(�)

= k

a

�

16�

2

g

2

GUT

+ b

a

� log

~

M

2

GUT

�

2

; (2:17)

without any additional threshold corrections. From the Grand Uni�cation point

of view, this would be the most convenient de�nition of the GUT scale, even

though the mass (2.16) itself has no physical meaning | there are no massive

particles whose mass is equal or even proportional to

~

M

GUT

. In this article,

however, we are interested in the moduli-dependence of the gauge couplings and

their di�erences at some �xed mass scale ��M

GUT

; for this purpose it is more

convenient to use a moduli-independent de�nition of M

GUT

and have explicit

moduli-dependent threshold corrections such as (2.14).

2.3. Back to N = 1 Orbifolds.

Having completed our excursion into N = 2 string vacua, we now return

to the main subject of this article, the study of the N = 1 orbifolds. We have

already mentioned that for orbifold groups G such as Z

3

or Z

7

that contain

no non-trivial twists with unit eigenvalues, the threshold corrections �

a

do not

depend on the untwisted moduli of the orbifold T

6

=G. Now consider an orbifold

group such as Z

4

in which some twists g 2 G (g 6= 1) have unit eigenvalues, but

all such twists leave unrotated the same complex plane in six dimensions. Then

all twists with unit eigenvalues form a subgroup G

0

of G| the little group of the

unrotated plane | and the complete set of the N � 2 supersymmetric sectors

17



of the orbifold T

6

=G form an N = 2 orbifold T

6

=G

0

. Combining the results of

subsections 2.1 and 2.2, we immediately �nd that in this case

�

a

=

jG

0

j

jGj

��

0

a

+ c

a

= �

b

0

a

jG

0

j

jGj

�

h

log

�

j�(T )j

4

ImT

�

+ log

�

j�(U)j

4

ImU

�i

+ c

a

;

(2:18)

where the b

0

a

� g

3

a

=16�

2

are the �-functions of the N = 2 supersymmetric theory

corresponding to the T

6

=G

0

orbifold, T and U are the moduli of the two-torus

T

2

�xed by G

0

, and the moduli-independent term c

a

comprises the contributions

of the N = 1 sectors as well as the constant part of eq. (2.14). Note that U is

not always a modulus of the N = 1 orbifold T

6

=G | the requirement that the

six-torus T

6

should be symmetric with respect to the full orbifold group G (and

not just G

0

� G) may �x the shape of T

2

and thus the value of U . On the

other hand, if the orbifold T

6

=G has untwisted moduli other than T and U , their

VEVs do not a�ect the one-loop threshold corrections to the gauge couplings.

Formula (2.18) looks almost identical to the N = 2 formula (2.14); however,

we would like to highlight the following di�erence: The coe�cients b

0

a

jG

0

j = jGj in

eq. (2.18) are related to the �-functions of the N = 2 theory T

6

=G

0

but generally

have very little to do with the �-functions of the N = 1 theory T

6

=G itself. To

be precise, if one writes the �-functions of an N = 1 orbifold as sums over all the

(g; h) 2 G�G sectors, then the contributions of the N = 2 sectors to b

a

amount

to exactly b

0

a

jG

0

j = jGj; however, while the N = 1 sectors do not contribute to

the moduli-dependence of the threshold corrections, they do contribute to the

�-functions. Hence b

a

6= b

0

a

jG

0

j = jGj and there is no reason for the b

a

and b

0

a

to

be proportional to each other.

?

Therefore, for an N = 1 orbifold the ratios �

a

=b

a

? And in fact for all speci�c N = 1 orbifold models we have considered b

a

are not pro-

portional to b

0

a

. For example, for the symmetric Z

4

orbifold whose gauge group is

E

8

� E

6

� SU (2) � U (1) one has (b

8

; b

6

; b

2

; b

1

) = (�90; 78; 54; 342) while (b

0

8

; b

0

6

; b

0

2

; b

0

1

) =

(�60; 84; 84; 252) (here the U (1) charges are normalized according to k = 3).
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generally di�er for di�erent gauge couplings and no rede�nition of M

GUT

would

reduce eq. (1.5) to the form (2.17).

In general, di�erent g 2 G with a unit eigenvalue may leave unrotated dif-

ferent complex planes of the six-torus; for example, the Z

2

� Z

2

orbifold has

three N = 2 twists, (+1;�1;�1), (�1;+1;�1) and (�1;�1;+1), each leaving

a di�erent complex plane invariant. The complete set of N = 2 twists form a

union

S

i

G

i

of the little groups of all the unrotated planes, and the subgroups

G

i

� G are disjoint | G

i

\G

j

= 1 for i 6= j | because no non-trivial twist

g 2 G � SU(3) can �x two planes at once. Therefore, the complete set of N = 2

supersymmetric sectors (g; h) of the orbifold T

6

=G is a disjoint union of sets of

all twisted sectors of N = 2 orbifolds T

6

=G

i

, which leads us to the formula

�

a

= �

X

i

b

i

a

�

�

G

i

�

�

jGj

�

h

log

�

j�(T

i

)j

4

ImT

i

�

+ log

�

j�(U

i

)j

4

ImU

i

�i

+ c

a

(2:19)

as a generalization of eq. (2.18). Here b

i

a

�g

3

a

=16�

2

are the �-functions of the N = 2

orbifold T

6

=G

i

, and T

i

and U

i

are the moduli of the two-torus �xed by G

i

. As

in the previous case of a single little group G

0

, U

i

may or may not be moduli of

the N = 1 orbifold T

6

=G. However, for an abelian point group G, all T

i

that

appear in eq. (2.19) always survive as untwisted moduli of T

6

=G; speci�cally, they

are among the diagonal untwisted (1,1) moduli (in the basis that diagonalizes

all g 2 G). On the other hand, some of the diagonal untwisted (1,1) moduli

may fail to appear in eq. (2.19) if no non-trivial g 2 G �xes the appropriate

complex plane. The untwisted moduli of abelian orbifolds that do appear in

eq. (2.19) are summarized in table 1. Note that each of those moduli spans a

separate (SU(1; 1)=U(1)) =PSL(2;Z) component

[19]

of the orbifold's untwisted

moduli space, which explains why eq. (2.19) is invariant with respect to separate

PSL(2;Z) modular transformations of every modulus that appears in it. The
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gauge groups and constants b

i

a

appearing in eq. (2.19) will of course depend on

how the twists act on the E

8

� E

8

(or SO(32)) current algebra.

For non-abelian N = 1 supersymmetric orbifolds the relation between the

untwisted moduli and the parameters T

i

and U

i

that appear in eq. (2.19) can

get rather complicated. On the one hand, there are fewer independent untwisted

moduli than in the abelian case; for example,T

6

=�(3 �3

2

) has only one untwisted

modulus T | the breathing mode (the group �(3�3

2

) is the semidirect product of

Z

3

and Z

2

3

). On the other hand, complex planes that are �xed by non-commuting

elements of the orbifold group need not be orthogonal to each other. Hence

there can be more than three terms in eq. (2.19), and the parameters T

i

and U

i

that appear in those terms can be di�erent linear combinations of the untwisted

moduli. Moreover, usually for at least some of the little groups G

i

the six-torus

T

6

cannot be decomposed into a direct sum T

4

� T

2

with the T

2

component

lying in the unrotated plane. In this case formula (2.14) does not apply to the

N = 2 orbifold T

6

=G

i

and eq. (2.19) loses its validity altogether. It should

not be too hard to derive a more general formula that applies to orbifolds of

non-decomposable six-tori, but we do not wish to do so here.

We conclude our analysis of the one-loop threshold corrections �

a

in super-

symmetric orbifolds with a comment that the right hand side of eq. (2.19) is not

the real part of any holomorphic function f

1-loop

a

(T

i

; U

i

) of the untwisted moduli

�elds. This non-holomorphic behavior is completely unexpected from the point of

view based on tree-level supergravity theories in four dimensions.

?

However, be-

yond the tree level supersymmetry does not require holomorphic f

a

(�) in gauge

? Strictly speaking, functions f

ab

(�) are completely holomorphic only in N = 1 theories.

In N = 2 supergravity theories such as toroidal compacti�cations of supersymmetric

six-dimensional theories mixing of the graviphoton with other vector �elds adds non-

holomorphic terms to f

ab

. However, for an unbroken gauge group a, the dependence

of f

a

on complex �elds neutral with respect to a | in particular, on the moduli | is

holomorphic.
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Table 1. Abelian N = 1 orbifolds and their untwisted moduli.

Orbifold Generators

# of untwisted moduli moduli

h

1;1

h

1;2

in (2:18)

Z

3

(e

2�i=3

; e

2�i=3

; e

2�i=3

) 9 0 none

Z

4

(i; i;�1) 5 1 T

3

; U

3

Z

6

(e

�i=3

; e

2�i=3

;�1) 3 1 T

2

; T

3

; U

3

Z

0

6

(e

�i=3

; e

�i=3

; e

4�i=3

) 5 0 T

3

Z

7

(e

2�i=7

; e

4�i=7

; e

8�i=7

) 3 0 none

Z

8

(e

�i=4

; e

3�i=4

;�1) 3 1 T

3

; U

3

Z

0

8

(e

�i=4

; e

5�i=4

; i) 3 0 T

3

Z

12

(e

�i=6

; e

5�i=6

;�1) 3 1 T

3

; U

3

Z

0

12

(e

�i=6

; e

7�i=6

; e

2�i=3

) 3 0 T

3

Z

2

� Z

2

(�1;�1; 1)

(1;�1;�1)

3 3 T

1

; U

1

; T

2

; U

2

; T

3

; U

3

Z

4

� Z

2

(i;�i; 1)

(1;�1;�1)

3 1 T

1

; T

2

; T

3

; U

3

Z

6

� Z

2

(e

�i=3

; e

��i=3

; 1)

(1;�1;�1)

3 1 T

1

; T

2

; T

3

; U

3

Z

0

6

� Z

2

(e

�i=3

; e

�i=3

; e

4�i=3

)

(1;�1;�1)

3 0 T

1

; T

2

; T

3

Z

3

� Z

3

(e

2�i=3

; e

4�i=3

; 1)

(1; e

2�i=3

; e

4�i=3

)

3 0 T

1

; T

2

; T

3

Z

6

� Z

3

(e

�i=3

; e

5�i=3

; 1)

(1; e

2�i=3

; e

4�i=3

)

3 0 T

1

; T

2

; T

3

Z

4

� Z

4

(i;�i; 1)

(1; i;�i)

3 0 T

1

; T

2

; T

3

Z

6

� Z

6

(e

�i=3

; e

5�i=3

; 1)

(1; e

�i=3

; e

5�i=3

)

3 0 T

1

; T

2

; T

3
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theories with massless charged fermions, and in the next section we shall provide

both a �eld-theoretical explanation of this phenomenon and a string-theoretical

proof that this explanation extends to the orbifold case.

3. Non-Holomorphic Field-Dependence

of E�ective Gauge Couplings

3.1. General Theory.

In classical N = 1 locally supersymmetric theories in four dimensions, the

complex functions (1.2) must be holomorphic functions f

ab

(�) of the chiral scalar

�elds �

i

. Naively, this theorem should apply to renormalized quantum �eld the-

ories as well, including e�ective �eld theories describing light particles in the

superstring's spectrum; however, our result (2.19) is inconsistent with any holo-

morphic f

1-loop

a

(T

i

; U

i

). In this section we re-examine the assumptions of the the-

orem and explain why it fails for quantum gauge theories with massless charged

�elds. This failure has nothing to do with string theory; instead, it arises from

infrared divergences that are purely �eld-theoretical in nature.

The argument for holomorphic f

ab

(�) is usually made in terms of super�elds.

Supersymmetric gauge invariance requires the action for the gauge super�elds to

be a chiral superspace integral

Z

d

4

x d

2

�

^

E(x; �) � f

ab

(�)W

a�

(x; �)W

b

�

(x; �) + h.c.; (3:1)

where W

a

�

is the gauge covariant super�eld that includes F

a

��

and

^

E is the super-

space analog of the vierbein's determinant. Viewed as a (composite) super�eld,

f

ab

(�) must be chiral and therefore must be a holomorphic function of the chiral

super�elds �

i

. Note that from the super�eld point of view eq. (1.2) is not a

de�nition of f

ab

but a result of expanding the action (3.1) in terms of ordinary
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gauge and scalar �elds (and their superpartners) and then identifying the gauge

couplings and � angles in the expanded action.

It is not however necessary to use super�elds to prove that f

ab

(�) should be

holomorphic in the classical case, and we would like to briey review an argument

that uses only the ordinary �elds.

?

For simplicity, we concentrate on the gauge-

singlet f

a

and their dependence on neutral scalars such as moduli; extending this

argument to the general case is fairly straightforward. Consider a three-point

Green's function involving a massless gauge boson A

a

�

, a gaugino �

b

and a neutral

fermion  

i

. Supersymmetry relates this Green's function to that involving two

gauge bosons and �

i

| the scalar superpartner of  

i

; in terms of Weyl fermions

this relation can be written as

A(A

a

�

; A

b

�

;�

i

) =

i

2

p

2

p

2�

(�

�

��

�

� �

�

��

�

)

�



� A(A

a

�

; �

b�

;  

i



): (3:2)

(We assume that gauginos are normalized to the same metric as gauge bosons

and  

i

to the same metric as �

i

; such normalization is always possible in a

four-dimensional supersymmetric theory, even o�-shell.) The tree-level Green's

functions can be read directly from the e�ective Lagrangian; in particular, given

eq. (1.1) for the bosonic terms with up to two space-time derivatives, we have

A

tree

(A

a

�

; A

b

�

; �

i

) = �

ab

�

(p

�

1

p

�

2

� g

��

p

1

� p

2

) �

@g

�2

a

@�

i

�

i

8�

2

�

����

p

1�

p

2�

�

@�

a

@�

i

+ O(p

4

)

�

;

(3:3)

where p

1;2

are the momenta of the two gauge bosons and the O(p

4

) term is

contributed by the higher-derivative terms not included in (1.1). Inserting the

? One reason for using ordinary �elds rather than super�elds is that our string calculations

are all performed in terms of ordinary �elds.
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most general gauge invariant and Lorentz invariant form of the Green's function

A(A

a

�

; �

b�

;  

i



) into eq. (3.2) and comparing with (3.3) leads to

@f

�

a

@�

i

�

@g

�2

a

@�

i

+

i

8�

2

@�

a

@�

i

= 0: (3:4)

The last equation, or rather its complex conjugate, means that f

a

is a holomorphic

function of the complex scalar �elds �

i

.

In the absence of infrared divergences, an almost identical argument can

be applied to quantum �eld theories, at least perturbatively. The role of the

e�ective Lagrangian is now played by the generating function � | the sum of all

1PI Feynman diagrams (for e�ective theories we should also include the diagrams

that are 1PI with respect to the light �elds, but not with respect to the heavy

�elds that are integrated out). This generating function is not polynomial in

�elds and their space-time derivatives, but it can be expanded into a convergent

power series. Let us collect the bosonic terms in that series that involve at most

two space-time derivatives (and which are not related by gauge invariance to

terms with more derivatives); this should give us an expression just like eq. (1.1),

simply because the latter is the generic expression.

y

Hence, in the low momentum

limit the Green's function involving two gauge bosons and one neutral scalar has

to look just like eq. (3.3), with some e�ective g

e�

a

(�) and �

e�

a

(�) replacing their

tree-level counterparts. From this point on, we proceed exactly as in the classical

case: formula (3.2) applies whenever there is unbroken supersymmetry, eq. (3.4)

follows, and f

e�

a

has to be a holomorphic function of the complex scalar �elds �

i

.

The loophole in this argument is that expanding 1PI Feynman diagrams into

a power series in the particles' momenta| a procedure necessary for interpreting

y Actually, the truly generic formula allows for a scalar �eld dependent gravitational con-

stant, i.e., the �rst term in eq. (1.1) should really be R=2�

2

(�). However, this general-

ization has no e�ect on the issue at hand (the arguments of ref. [27] do not apply here).
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� as a local e�ective Lagrangian | yields a series whose radius of convergence

is given by the mass of the lightest particle with non-derivative interactions. For

quantum gauge theories with massless charged particles this radius is zero, so

there is no local e�ective Lagrangian at all. In such theories the zero-momentum

e�ective 1=g

2

a

cannot be de�ned because of infrared divergences; the running ef-

fective couplings 1=g

2

a

(p

2

) | de�ned at some o�-shell momentum p

2

6= 0 | are

commonly used instead. If we could similarly de�ne running e�ective �

a

(p

2

) and

relate the �eld dependence of the running 1=g

2

a

(p

2

;�) and �

a

(p

2

;�) to the o�-

shell two-vector-one-scalar Green's functions with a formula similar to eq. (3.3),

then we would have holomorphic running f

a

(p

2

; �) just as we had holomorphic

zero-momentum f

a

(�) before. (Strictly speaking, we would need o�-shell su-

persymmetry to maintain eq. (3.2) o� shell; however, this is not a problem in

four dimensions.) We will see, however, that de�ning a running �eld-dependent

�

a

(p

2

;�) is often impossible and this is precisely what in a supersymmetric the-

ory allows a running 1=g

2

a

(p

2

;�) not to be the real part of a holomorphic function

of �'s.

Consider a �eld-dependent e�ective coupling such as �

e�

a

(�). It is actually

an in�nite series of coupling constants �

e�

a;i:::l

that appear as coe�cients of the

operators

i

8�

2

F

a

~

F

a

�

i

� � � �

l

in the e�ective Lagrangian of the theory. Each of the

coe�cients depends on the expectation values of the scalar �elds, but at zero

momentum the �

e�

a;i:::l

(h�i) are related to each other via

�

e�

a;i

(h�i) =

@

@ h�

i

i

�

e�

a

(h�i) ; �

e�

a;ij

(h�i) =

1

2

@

@ h�

i

i

�

e�

a;j

(h�i) ; etc. (3:5)

which means that �

a;i:::l

is simply the derivative

1

n!

@

n

�

a

=@�

i

� � � @�

l

. If a local

e�ective Lagrangian does not exist, then the set of zero-momentum e�ective

couplings �

e�

a;i:::l

(h�i) should be replaced by a set of running e�ective couplings

f�

a;i:::l

g(p

2

; h�i) (henceforth, curly brackets fg will denote running couplings).
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Because the classical analogues of these running couplings are derivatives, we

often call them `e�ective derivatives' or `renormalized derivatives'

1

n!

f@

n

�

a

=@�

i

� � � @�

l

g(p

2

; h�i) � f�

a;i:::l

g(p

2

; h�i): (3:6)

Our terminology and notations notwithstanding, running couplings (3.6) do not

have to be derivatives of some running �eld-dependent f�

a

(�)g(p

2

) | if the

running couplings do not obey eqs. (3.5), the �eld-dependent f�

a

(�)g(p

2

) cannot

be consistently de�ned. Naturally, the same considerations apply to any other

running �eld-dependent coupling such as fg

�2

a

(�)g(p

2

), etc.

A priori, there is no reason why relations (3.5) should continue to hold at

non-zero momenta (they hold at zero momenta because there is no di�erence

between a zero-momentum external leg in a 1PI Feynman diagram and a vacuum

insertion). What actually happens depends on the particular theory and the

particular running �eld-dependent coupling under consideration. Speci�cally, we

need answers to the following three questions:

� Are the running gauge couplings fg

�2

a

g(p

2

; h�i) and the running couplings

f@g

�2

a

=@�

i

g(p

2

; h�i) consistent with eqs. (1.7)?

� Are the running � angles f�

a

g(p

2

; h�i) and the running axionic couplings

f�

a;i

g(p

2

; h�i) consistent with a similar relation? Actually, since the ef-

fective � angles cannot be obtained via Feynman diagrams (the e�ective

f�

a

g is the coe�cient of the tr

a

(F

~

F) operator in the e�ective Lagrangian,

but that operator is a total space-time derivative), this question amounts

to checking the integrability conditions

@

@ h�

j

i

f�

a;i

g(p

2

; h�i)

?

=

@

@ h�

i

i

f�

a;j

g(p

2

; h�i) (3:7)

for the axionic couplings.
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� What are the consequences of unbroken supersymmetry for the running

fg

�2

a

g(p

2

; h�i) and related couplings and how do these consequences depend

on the answers to the �rst two questions?

The last question, at least, can be answered generically. Eq. (3.2) is a direct

consequence of unbroken supersymmetry and thus should hold at any order of

perturbation theory or even non-perturbatively. The general form of the three-

boson Green's function A(A

a

�

; A

b

�

; �

i

) is constrained by the gauge invariance and

Lorentz invariance to be just like eq. (3.3), except that the tree-level @g

�2

a

=@�

i

and @�

a

=@�

i

are replaced by some momentum-dependent form factors. Let us

identify those form factors as the running couplings fg

�2

a;i

g(p

2

) and f�

a;i

g(p

2

); this

amounts to a choice of the renormalization scheme. Eq. (3.2) further constrains

the form of the bosonic Green's function A(A

a

�

; A

b

�

;�

i

); in terms of the form-

factors fg

�2

a;i

g(p

2

) and f�

a;i

g(p

2

) this constraint is

f@g

�2

a

=@�

i

g +

i

8�

2

f@�

a

=@�

i

g = 0 (3:8)

(cf. eq. (3.4) for the classical case). In terms of ff

a;i

g, eq. (3.8) and its complex

conjugate become eqs. (1.8), as promised in the introduction.

Further consequences of unbroken supersymmetry for the running gauge cou-

plings depend on the answers to our �rst two questions. Indeed, if eqs. (1.7)

hold true (we believe this is generally the case), then eq. (3.8) and its complex

conjugate give us the following formul� for the running axionic couplings f�

a;i

g:

f@�

a

=@�

i

g = +8�

2

i

@fg

�2

a

g

@ h�

i

i

; f@�

a

=@�

{

g = �8�

2

i

@fg

�2

a

g

@




�

{

�

: (3:9)

These formul� are consistent with the integrability eqs. (3.7) if and only if

@

@ h�

i

i

@

@




�

|

�

fg

�2

a

g(p

2

; h�i ;




�

�

) � 0; (3:10)

that is, if and only if the dependence of the running fg

�2

a

g(p

2

) on the scalar
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expectation values can be described by the real part of a holomorphic function of




�

i

�

. (

�1

8�

2

f�

a

g will then be its imaginary part via eq. (3.9).) Thus we arrive at

the following dichotomy for a supersymmetric theory: either there is a running

ff

a

(�)g(p

2

) that is a holomorphic function of the complex scalar �elds and the

running fg

�2

a

g(p

2

) is its real part, or there is no well de�ned running f�

a

(�)g(p

2

)

(i.e., eq. (3.7) does not hold) and the dependence of the running fg

�2

a

(�)g(p

2

)

on the scalar �elds can be described by any real analytic function of �

i

and �

{

.

Clearly, it is the second alternative that is realized in the orbifold case. As we will

see in the next subsection, the same phenomenon also occurs in renormalizable

supersymmetric �eld theories.

3.2. One Loop Results for Quantum Field Theories.

In this subsection we demonstrate that eqs. (3.7) often fail beyond the tree

level while eqs. (1.7) continue to hold, at least to the one loop order. For simplic-

ity, we only discuss renormalizable gauge theories and also disregard the possibil-

ity of partial gauge symmetry breakdown (e.g., SU(5) 7! SU(3)� SU(2)� U(1)

at M

GUT

), although our results hold true in the general case as well. On the

other hand, we allow the theories to be non-supersymmetric. Renormalizability

requires f

tree

a

= const and also prohibits derivative couplings of scalars to each

other (as in a �-model) or to fermions. Thus there are only three kinds of one-loop

Feynman diagrams contributing to the e�ective f@f

a

=@�

i

g:

� �
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where the internal propagators belong to charged fermions and the � vertex is

due to Yukawa couplings

1
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where the internal propagators belong to charged scalars and the � vertex is due

to (superrenormalizable) three-scalar couplings

1

6

T

mni

�

m

�

n

�

i

(here the external

scalar �eld �

i

is neutral while the internal scalars �

m

and �

n

are charged). In

terms of the �eld-dependent mass matricesM

mn

(�) for the charged fermions and

M

2

mn

(�) for the charged scalar �elds, we have Y

mni

= @M

mn

=@�

i

and T

mni

=

@M

2

mn

=@�

i

, so after computing the momentum integrals in diagrams (3.11) and

(3.12), we arrive at the following results:

f@g

�2

a

=@�

i

g

1-loop

(p

2

; h�i) =

�1

24�

2

Tr

�

Q

2

a

�

@M

@�

i

M

y

+ M

@M

y

@�

i

�

1

MM

y

+O(p

2

)

�

�

1

48�

2

Tr

�

Q

2

a

@M

2

@�

i

1

M

2

+O(p

2

)

�

(3:13)

and

f@�

a

=@�

i

g

1-loop

(p

2

; h�i) =

�i

2

Tr

�

Q

2

a

�

@M

@�

i

M

y

� M

@M

y

@�

i

�

1

MM

y

+O(p

2

)

�

:

(3:14)

Here Q

a

is a generator of the gauge group a, the traces are taken over Weyl

fermions and complex scalars, and the precise form of the O(p

2

) expressions in

29



the denominators is rather complicated but is irrelevant to our arguments. In

case of a supersymmetric gauge theory, M

2

= MM

y

(gauginos can be excluded

from our considerations here since they are massless and thus do not contribute to

eqs. (3.13) and (3.14)) and the matrix elements of M are holomorphic functions

of �

i

, so formul� (3.13) and (3.14) become

8�

2

f@g

�2

a

=@�

i

g

1-loop

= �if@�

a

=@�

i

g

1-loop

=

�1

2

Tr

�

Q

2

a

@M

@�

i

M

y

1

MM

y

+O(p

2

)

�

;

8�

2

f@g

�2

a

=@�

{

g

1-loop

= +if@�

a

=@�

{

g

1-loop

=

�1

2

Tr

�

Q

2

a

M

@M

y

@�

{

1

MM

y

+O(p

2

)

�

;

(3:15)

in full agreement with eqs. (1.8). (In the supersymmetric case ff

a;i

g and ff

a;�{

g

can also be computed using super�eld Feynman rules,

[28]

and the result of this

calculation is identical to eqs. (3.15).)

We now show that regardless of whether the theory in question is supersym-

metric or not, the couplings (3.13) are integrable at any p

2

and furthermore are

consistent with eq. (1.7). Indeed, to the one loop order the running e�ective

gauge coupling is

[29]

f1=g

2

a

g

1-loop

(p

2

) =

1

g

2

a bare

+

11C

2

48�

2

log

O(p

2

)

�

2

(3:16)

�

1

24�

2

Tr

�

Q

2

a

log

MM

y

+O(p

2

)

�

2

�

�

1

48�

2

Tr

�

Q

2

a

log

M

2

+O(p

2

)

�

2

�

;

where � is the ultraviolet cuto� and C

2

is the second Casimir of the adjoint rep-

resentation of the gauge group. Straightforward di�erentiation of this expression

results in a formula for @fg

�2

a

g=@




�

i

�

that looks identical to eq. (3.13), except

for a possibly di�erent speci�c form of the various O(p

2

) terms. However, the

speci�c form of the O(p

2

) terms in eq. (3.16) depends on a particular choice of the

renormalization scheme for the running gauge couplings. Similarly, in eq. (3.13)
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the exact de�nition of p

2

, in terms of the momenta p

2

1;2;3

of the three particles

involved, amounts to a choice of a renormalization scheme for the running fg

�2

a;i

g

couplings. Therefore, given an appropriate choice of the renormalization schemes

for the running couplings | both fg

�2

a

g(p

2

) and f@g

�2

a

=@�

i

g(p

2

) | eq. (1.7)

should hold exactly and for all renormalization scales p

2

. In all other renormal-

ization schemes eq. (1.7) holds whenever the particular values of the O(p

2

) terms

are not important, that is, whenever the mass

2

of any charged particle is either

much bigger than p

2

or much less than p

2

. In particular, eq. (1.7) always holds

in the infrared limit when p

2

� mass

2

of the lightest massive charged fermion or

scalar. (Note that in the infrared limit fg

�2

a

g(p

2

! 0) diverge logarithmically, but

their derivatives with respect to scalar �elds �

i

remain �nite. Correspondingly,

fg

�2

a;i

g(p

2

= 0) do not su�er from infrared divergences.)

Now consider the running axionic couplings f�

a;i

g(p

2

; h�i). (Like fg

�2

a;i

g(p

2

),

these couplings are infrared-convergent even at p

2

= 0.) At �rst glance eq. (3.14)

looks just like the �rst line of eq. (3.13) except for the relative sign between the

two terms in parentheses, but that minus sign is precisely what renders the axionic

couplings non-integrable. Indeed, explicit di�erentiation of eq. (3.14) results in

@f�

a;i

g

1-loop

(p

2

; h�i)

@ h�

j

i

� (i$ j) (3:17)

= iTr

�

O(p

2

)

M

y

M +O(p

2

)

�Q

2

a

@M

y

@�

i

1

MM

y

+O(p

2

)

@M

@�

j

�

� (i$ j) ;

and for non-zero p

2

the expression on the right hand side generally has no reason

to vanish. In the zero momentum limit, the �rst factor in parentheses vanishes

provided the matrixM

y

M is invertible. In this case f�

a;i

g(p

2

= 0) are integrable

and result in

f�

a

(�)g

1-loop

(p

2

= 0) = Tr

�

Q

2

a

ImlogM(�)

�

+ const (3:18)

| the basic formula in the study of axions. (In the case of QCD eq. (3.18) be-
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comes � = Arg det(M

quark

) + const.) Notice however that generally eq. (3.17)

leads to integrable axionic couplings only for p

2

� mass

2

of the lightest charged

fermion. If some of the fermions are exactly massless (e.g., when the gauge sym-

metry is chiral), then the matrixM

y

M is not invertible and the O(p

2

)=(M

y

M +

O(p

2

) factor retains some O(1) matrix elements even in the zero momentum

limit, and one should not expect f�

a;i

g(p

2

) to be integrable at any p

2

, how-

ever small. Eq. (3.18) also yields ill de�ned � angles whenever some charged

fermions are massless. This phenomenon is well known,

[30]

although it is usually

explained in terms of the anomalous chiral symmetry of the fermions that shifts

the � angle by an arbitrary amount and can even remove it altogether. Note

that the non-integrability of f�

a;i

g has nothing to do with supersymmetry since

the phenomenon occurs in both supersymmetric and non-supersymmetric gauge

theories.

At this point we would like to present a simple example of a gauge theory

in which the axionic couplings are in fact non-integrable. Consider an E

6

gauge

theory with two 27 families of chiral fermions and one 27 antifamily. Let the

fermion mass matrix be

M(�) =

0

B

@

0 0 �

1

0 0 �

2

�

1

�

2

0

1

C

A


 I

27

; (3:19)

where �

1;2

are two complexE

6

-singlet scalar �elds. The �rst two rows or columns

of thisM correspond to the 27 �elds and the third row/column corresponds to the

27's | apart from its speci�c � dependence,M is the most general mass matrix

that is allowed by the gauge symmetry. In this model, there is always a massive

27 + 27 multiplet of fermions and a massless 27 multiplet, but the particular

linear combination of the two 27 families that remains massless depends on the
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expectation values




�

1;2

�

. Applying formula (3.14) to this model yields

f@�=@�

i

g

1-loop

(p

2

; h�i ;




�

�

) = �3i




�

{

�

jh�

1

ij

2

+ jh�

2

ij

2

+O(p

2

)

;

f@�=@�

{

g

1-loop

(p

2

; h�i ;




�

�

) = +3i




�

i

�

jh�

1

ij

2

+ jh�

2

ij

2

+O(p

2

)

;

(3:20)

although these axionic couplings have well-de�ned limits at zero momentum, they

do not obey the integrability equations (3.7) even in that limit.

Finally, consider the e�ective gauge coupling in a supersymmetrized ver-

sion of the same model. Given the spectrum of the theory and the fermionic

masses (3.19), we have

1

g

2

(p

2

; h�i ;




�

�

)

=

1

g

2

0

+

33

16�

2

log

O(p

2

)

�

2

�

6

16�

2

log

�

�




�

1

�

�

�

2

+

�

�




�

2

�

�

�

2

+O(p

2

)

�

2

;

(3:21)

this 1=g

2

is not the real part of any holomorphic function of �

1

and �

2

. As

we explained in the �rst half of this section, this non-holomorphicity is directly

related to non-integrability of the axionic couplings (3.20); indeed, it is easy to

see that eqs. (3.9) do hold for the model at hand.

The speci�c gauge group and the fermionic mass matrix we used in this

example were rather arbitrary. It is easy to see that the same behavior occurs

whenever some charged fermions are massive and some are massless, but which

particular fermionic �elds remain massless depends on the scalar expectation

values. One can argue that this is exactly what happens in string vacua with

moduli, where one has an in�nite number of massive charged fermions, a �nite

number of massless charged fermions, and the vertices for these massless fermions

are moduli-dependent. Thus we expect the string theory to lead to e�ective

couplings that obey eqs. (1.7) and (1.8), but not eq. (3.7); consequently, g

1-loop

a
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need not be given by the real parts of some holomorphic functions of the complex

moduli scalars. In the next subsection we will see that this is exactly what

happens in the orbifold case.

3.3. One-Loop Results for Orbifolds.

In the previous subsection we showed that in �eld theory the running gauge

couplings fg

�2

a

g(p

2

) and the three-�eld couplings fg

�2

a;i

g(p

2

) are related to each

other via eqs. (1.7) (at least to the one-loop order) while no such relation generally

holds for the f�

a;i

g couplings. Consequently, unbroken supersymmetry does not

require the e�ective fg

�2

a

(�)g(p

2

) to be the real parts of holomorphic functions

of the complex scalar �elds. In this subsection we demonstrate that exactly

the same behavior occurs in string theory, at least in the orbifold case; this is

the origin of non-holomorphicity found in eq. (2.19). Speci�cally, we are going to

compute fg

�2

a;i

g

1-loop

and f�

a;i

g

1-loop

for supersymmetric orbifolds and verify that

eqs. (1.7) and (1.8) are obeyed (with the gauge couplings given by eq. (2.19)),

but that the integrability conditions (3.7) for f�

a;i

g

1-loop

are not satis�ed.

Our starting point is the CP-even three-particle scattering amplitude

A

string

even

(A

a

�

; A

b

�

; �

i

) (3:22)
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�

1
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�
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1
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2

) �

�

fg
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1-loop

+ (2��

a
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i

)

1-loop

fg

�2

a;i

g

tree

�

=

X
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(�)

s

1

+s

2

Z

�2�

d

2

� Z(�; s)

Z

d

2

�

1

Z

d

2

�

2

D

V

0

A

a

�

(�

1

)V

0

A

b

�

(�

2

)V

0

�

i

(0)

E

(�; s) ;

where V

0

A

and V

0

�

are the zero-picture

[31]

vertex operators for the gauge and scalar

bosons, respectively, and Z(�; s) � Tr

s

1

�

(�)

s

2

q

H�1

�q

�

H�1=2

�

are the partition

functions for the even spin structures of the heterotic string. The odd (Ramond-

Ramond) spin structure produces the CP-odd amplitude A

string

odd

; we will return

to it later for computing the f@�=@�g couplings. A

string

is a scattering amplitude
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and not a 1PI Green's function, therefore eq. (3.22) includes one-loop corrections

��

a

and ��

i

to the external legs of the amplitude. Fortunately, the tree-level

couplings fg

�2

a;i

g

tree

vanish for all massless scalars �

i

except the dilaton (cf. eq.

(1.3)), so we do not have to actually compute one-string-loop corrections ��

a

and

��

i

(which is just as well since they diverge on shell). It is possible however that

string loop corrections to scalar propagators cause mixing of the dilaton with

other massless scalars; to avoid this potential problem, we henceforth limit our

attention to the di�erences between

1

k

a

ff

a;i

g for di�erent gauge couplings a; this

is similar to computing only the di�erences between the threshold corrections

1

k

a

�

a

in ref. [16] and in section 2 of this article.

Another peculiarity of the string-theoretical formula (3.22) is that it is valid

only for on-shell momenta p

2

1

= p

2

2

= p

2

3

= 0

?

and thus yields only fg

�2

a;i

g(p

2

= 0).

One could with more e�ort compute ff

a;i

g

string

(p

2

6= 0) from a four-particle

amplitude such as A(A

a

�

; A

b

�

; �

i

; graviton) instead of (3.22), but in this article

we simply restrict our veri�cation of eqs. (1.7) and (1.8) to the p

2

= 0 limit.

Since the infrared-divergent term in eq. (1.5) is moduli-independent, we expect

that fg

�2

a;i

g

string

(p

2

= 0) will be infrared-convergent, like the �eld-theoretical

expression (3.13).

The actual evaluation of f@g

�2

a

=@�

i

g

1-loop

closely parallels the calculation of

the threshold corrections in ref. [16] and their moduli-dependence in section 2 of

this article. We begin with the vertex operators for the untwisted modulus �

i

and for the gauge bosons, which are

V

0

�

i

(�;

�

�) =

v

IJ

(�

i

)

2�

� @X

I

(�) �

�

�

@X

J

+ i(p �	)	

J

�

(

�

�) � e

ip�X(�;

�

�)

;

V

0

A

a

�

(�;

�

�) =

1

2�

J

a

(�) �

�

�

@X

�

+ i(p �	)	

�

�

(

�

�) � e

ip�X(�;

�

�)

;

(3:23)

? We interpret these mass-shell conditions as constraints on complex Euclidean momenta

p

1;2;3

; real Minkowski momenta that satisfy these constraints and also p

1

+ p

2

+ p

3

= 0

would be collinear, and that would cause amplitude (3.22) to vanish kinematically for

transverse gauge bosons.
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where

v

IJ

(�

i

) �

@

@�

i

(G

IJ

+B

IJ

) (3:24)

is a (c-number) matrix corresponding to a particular untwisted modulus �

i

and

J

a

are the Kac-Moody currents responsible for the gauge symmetry. Given these

vertices and proceeding exactly as in ref. [16], we reduce formula (3.22) to

fg

�2

a;i

g =

v

IJ

(�

i

)

32�

3

Z

�

d

2

� B

IJ

a

(�; ��) + k

a

� (a-independent term); (3:25)

where

B

IJ

a

(�; ��) = j�(� )j

�4

�

X

even s

(�)

s

1

+s

2

dZ

	

(s; ��)

2�i d��

� (3:26)
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�
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2

a

� (�)

s

2

F

q

H�

11

12

�q

�

H�

3

8

�

int

| formul� very similar to eqs. (2.1) and (2.2), except for a missing 1=�

2

factor

in eq. (3.25) (it is canceled by the extra integral

R

d

2

� = �

2

) and for the extra

operator :@X

I

�

@X

J

: in the trace in eq. (3.26). The latter operator is normal

ordered, so only the zero modes of the free bosons X

I

and X

J

contribute to its

expectation value.

Next we proceed as in section 2.1 and rewrite the traces in eq. (3.26) as sums

over the orbifold twist sectors:

Tr
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:@X
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2
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(3:27)

=

1

jGj

X

g;h2G

gh=hg

Tr
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1
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�
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�
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2
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3
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�
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jGj

X

g;h2G

gh=hg

Tr
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1
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�
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2

F
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H�

11

12

�q

�

H�

3

8

�

int

�

D

:@X

I

�

@X

J

:

E

(g; h):

The second equation here holds because in each separate (g; h) sector there is

no correlation between the free bosons X

I;J

and other world-sheet degrees of
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freedom. The only sectors (g; h) in which these two bosons have zero modes (and

thus the only sectors whose contributions to eq. (3.27) do not necessarily vanish)

are the sectors in which X

I

and X

J

coordinates of the six-torus are invariant

with respect to both g and h. All such sectors are N = 2 supersymmetric and

together they form an N = 2 orbifold T

6

=G

0

, where G

0

is the little group of X

I

and X

J

. Obviously, not all pairs (X

I

;X

J

) lead to non-trivial little groups G

0

(and the trivial case G

0

= 1 is just the N = 4 supersymmetric untwisted sector

that yields B

IJ

a

= 0 as well as B

a

= 0). It is easy to see that the untwisted moduli

made from the (X

I

;X

J

) pairs that do lead to non-trivial G

0

are precisely the

moduli that appear in eq. (2.19) | the same set of moduli listed in table 1 for

abelian orbifolds.

At this point the problem of computing the fg

�2

a;i

g couplings for N = 1

orbifolds has been reduced to the N = 2 supersymmetric case in which �

i

is one

of the moduli of the unrotated two-torus, and we can now repeat the arguments of

section 2.2 and appendix A almost verbatim. This gives us the following formul�

(for the N = 2 case)

fg

�2

a;i

g = b

a

�

v

IJ

(�

i

)

8�

Z

�

d

2

�

~

Z

IJ

(�; ��) + k

a

� (a-independent term); (3:28)

where

~

Z

IJ

(�; �� ) =

X

(p

L

;p

R

)2�

2;2

q

p

2

L

=2

�q

p

2

R

=2

� p

I

L

p

J

R

(3:29)

is the factor in B

IJ

a

contributed by the zero modes of X

I

and X

J

. (As in the steps

leading to eq. (2.10), modular invariance forces the internal trace to be a constant

factor b

a

in eq. (3.28).) For the N = 1 supersymmetric orbifolds the factor b

a

in eq. (3.28) becomes b

0

a

jG

0

j=jGj for the appropriate G

0

, and in eq. (3.29) �

2;2

is

the invariant lattice of G

0

rather than G.
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Let us now go back to eqs. (2.9) and (2.11) and consider

^

Z

torus

as a function

of the four moduli of the �xed torus T

2

. It is a straightforward exercise to show

that

@

^

Z

torus

(T; T; U; U)

@�

= 2��

2

~

Z

IJ

(T; T; U; U)�

@

@�

(G

IJ

+B

IJ

) � 2��

2

~

Z

IJ

�v

IJ

(�);

(3:30)

where � is any linear combination of T , U , T and U . Therefore, combining

eqs. (3.28) and (3.30) together, we can write

?

�

@g

�2

a

@�

i

�

1-loop

=

b

a

8�

Z

�

d

2

�

2��

2

@

^

Z

torus

@�

i

=

1

16�

2

@�

a

@�

i

(3:31)

(modulo a-independent terms), and this is precisely the formula (1.7) for super-

symmetric orbifolds.

In order to con�rm that eqs. (1.8) apply to supersymmetric orbifolds, we

must calculate f�

a;i

g

1-loop

from the CP-odd part of the one-loop scattering am-

plitude involving two gauge bosons and one neutral scalar. This amplitude arises

from the odd (Ramond-Ramond) spin structure on the world sheet torus and

is therefore computed according to somewhat di�erent rules

[32]

than the even

amplitude (3.22). After eliminating the ghost degrees of freedom, we have

A

odd

(A

a

�

; A

b

�

; �

i

) �

i�

ab

8�

2

�

����

p

1�

p

2�

� f@�

a

=@�

i

g

1-loop

(3:32)

=

Z

�2�

d

2

� Z

0

RR

(� )

Z

d

2

�

1

Z

d

2

�

2

I

d

�

�

D

T

F

(

�

�)V

0

A

a

�

(�

1

)V

0

A

b

�

(�

2

)V

�1

�

i

(0)

E

0

RR

;

where T

F

is the fermionic stress tensor operator and V

�1

�

is the scalar vertex in

? The second equation here is the derivative of eq. (2.10). Since the integral (2.10) does

not converge uniformly, interchanging the order of di�erentiation and integration requires

insertion of a regulator like that used in appendix B.

38



the (�1)-picture.

[31]

For an orbifold and its untwisted modulus � we have

T

F

(

�

�) = g

��

	

�

(

�

�) �

�

@X

�

(

�

�) + G

KL

	

K

(

�

�) �

�

@X

L

(

�

�) ;

V

�1

�

(�;

�

�) =

v

IJ

(�)

2�

� @X

I

(�) �	

J

(

�

�) � e

ip�X(�;

�

�)

;

(3:33)

where G

KL

is the metric for the six compact dimensionsX

K

and v

IJ

(�) is de�ned

in eq. (3.24). The primes in eq. (3.32) refer to removal of the fermionic zero modes

from the Ramond-Ramond partition function (which would otherwise vanish) into

the product of vertex operators, which therefore has to supply a 	

�

or 	

I

operator

for every world sheet fermion that has a zero mode. In particular, the four 	

�

fermions always have zero modes in the Ramond-Ramond sector; the appropriate

operators are contained in the gauge boson vertices (3.23) and together yield the

�

����

p

1�

p

2�

factor in the amplitude (3.32).

For an orbifold the di�erent (g; h) sectors have di�erent numbers of fermionic

zero modes: In an N = 1 supersymmetric sector only the four 	

�

have zero

modes, in an N = 2 sector two of the six 	

I

fermions have them too, and in the

N = 4 sector all six 	

I

have them. Consequently, the untwisted sector does not

contribute to the amplitude (3.32) since only two 	

I

operators can be supplied by

the vertices V

�1

�

and T

F

while six are needed to soak up the zero modes. On the

other hand, in an N = 1 supersymmetric sector the fermionic zero modes pose no

problem, but the lack of zero modes for the bosonic operators @X

I

(coming from

the vertex V

�1

�

) and

�

@X

L

(coming from the T

F

vertex) proves to be just as lethal.

Indeed, these two operators can only be contracted with each other, but in the

absence of zero modes the correlator




@X

I

�

�

@X

L

�

vanishes. Finally, the N = 2

sectors of a supersymmetric orbifold can contribute to the amplitude (3.32), but

only if both indices of the v

IJ

(�) matrix lie in the unrotated complex plane.

Therefore, the problem again reduces to the case of an N = 2 supersymmetric

orbifold and only the moduli of the unrotated two-torus need to be considered.
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(Of course, were the situation any di�erent, this would be an immediate violation

of eq. (1.8).)

The actual calculation of the couplings f�

a;i

g for a toroidal compacti�ca-

tion of a six-dimensional supersymmetric theory is fairly straightforward. The

correlator in eq. (3.32) becomes a product of several independent expectation

values

h(p

1

�	)	

�

(p

2

�	)	

�

i

0

�hJ

a

(�

1

)J

b

(�

2

)i�v

IJ

D

@X

I

�

@X

L

E

�G

KL

D

	

K

	

J

E

0

; (3:34)

and only the second factor here depends on the location of the vertices on the

world sheet. Since we are only looking for the di�erences between

1

k

a

f�

a;i

g

for di�erent gauge couplings a, we can replace hJ

a

J

b

i with its zero-mode part

�4�

2

�

ab




Q

2

a

�

just as we did earlier in this article. After that, we simply evaluate

all the factors in eq. (3.34) and the Ramond-Ramond partition function Z

0

RR

; the

result is

f�

a;i

g =

v

IJ

(�

i

) �

JK

G

KL

p

detG

�

Z

�

d

2

� �C

a

(� )

~

Z

IL

(�; ��) + k

a

� (a-independent term);

(3:35)

where C

a

(� ) is de�ned in eq. (A.9) at the end of Appendix A. In the previous

section we showed that C

a

is a constant equal to b

a

, so the integral in eq. (3.35)

is identical to that in eq. (3.28). The matrix factor v

IJ

(�

i

)�

JK

G

KL

=

p

detG in

eq. (3.35) di�ers from v

IL

(�

i

) that appears in eq. (3.28), but eqs. (2.12) give us

the following relations for the moduli T and U and their complex conjugates:

v

IJ

(�) � �

JK

G

KL

p

detG

=

(

+iv

IL

(�) if � is T or U ,

�iv

IL

(�) if � is T or U .

(3:36)

Therefore, eq. (3.35) becomes

f@�

a

=@�g =

(

+8�

2

if@g

�2

a

=@�g if � is T or U ,

�8�

2

if@g

�2

a

=@�g if � is T or U ,

(3:37)
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which are precisely the eqs. (1.8) for the theory at hand.

As with the �eld theory case we discussed earlier in this section, non-holo-

morphicity of the one-loop corrections to the gauge couplings of a supersymmetric

orbifold is related to the non-integrability of the axionic couplings f�

a;i

g. Indeed,

using eqs. (3.9), whose applicability to orbifolds we have just con�rmed, and

eq. (2.14) for the moduli-dependence of the threshold corrections, we �nd that

for example

@

@T

f@�

a

=@Tg

1-loop

=

+ib

a

8T

2

2

while

@

@T

f@�

a

=@Tg

1-loop

=

�ib

a

8T

2

2

: (3:38)

The fact that supersymmetric orbifolds and renormalizable gauge theories both

exhibit non-integrability of f�

a;i

g accompanied by non-holomorphicity of the

gauge couplings strongly suggests that this behavior is rather common. We be-

lieve that the non-orbifold vacua of the heterotic string that give rise to massless

charged fermions should also behave in the same manner, but a direct con�rma-

tion of this conjecture will require further research.

We conclude this section with a remark that the string scattering amplitudes

(3.22) and (3.32) can also be used to compute ff

ab;i

g for twisted scalars �

i

in the

orbifold's spectrum as well as for di�erent kinds of string vacua. In those cases the

full analytic structure of f

ab

cannot be deduced, but even the knowledge of its �rst

derivative would be of interest since it is precisely ff

ab;i

g which enter eq. (1.4).

In this article we have nothing more to say about non-orbifold vacua, but for the

orbifolds it is very easy to show that ff

ab;i

g = 0 for all twisted scalars �

i

. Indeed,

the discrete symmetry of an orbifold forbids any scattering process involving one

twisted particle plus any number of particles arising from the untwisted sector;

this selection rule is independent of the number of string loops. In particular, since

the massless gauge bosons always belong to the untwisted sector, for any scalar

�

i

arising from any twisted sector of an orbifold, A(A

a

�

; A

b

�

; �

i

) and hence ff

ab;i

g
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must vanish. Of course, this argument does not apply to blown-up orbifolds

(points in the full moduli space where twisted moduli have acquired vacuum

expectation values).

4. Conclusion

The main result of this article is formula (2.19), expressing the moduli-

dependence of threshold corrections �

a

for N = 1 supersymmetric orbifold vacua

of the heterotic string. We conclude this article by comparing our result with

other calculations

[7;8;27;33;34]

of the same quantities in related four-dimensional

N = 1 supersymmetric vacua.

?

Reference [7] considered the four-dimensional

e�ective �eld theory obtained by truncating the ten-dimensional e�ective theory,

and found that a moduli-dependent one-loop contribution to f

a

arose from the

ten-dimensional Green-Schwarz anomaly cancelling term. The truncation proce-

dure used (previously outlined in ref. [3]) corresponds roughly to the untwisted

sector of an orbifold compacti�cation. However, in an actual four-dimensional

string vacuum, such as an orbifold, truncation is not legitimate at the loop-level

because it omits the contributions of an in�nite number of states which can prop-

agate in the loops (both twisted states and winding states in the orbifold case).

Another approach to determine the moduli-dependence of f

a

(T

i

) was to use

the classical Peccei-Quinn symmetries

[3;5;8]

of the moduli T

i

for a Calabi-Yau

manifold or an orbifold, which have the form ReT

i

! ReT

i

+ const, together

with the requirement that f

a

(T

i

) be holomorphic. The resulting f

a

found was

linear,

[7;8]

f

1-loop

a

(T

i

) =

�i

16�

2

A

i

a

T

i

; or �

a

= A

i

a

ImT

i

; (4:1)

but the constants A

i

a

could not be determined from the symmetry considerations.

? While this paper was typed, we received several preprints

[35]

that appear to overlap with

refs. [27,34].
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Later it was realized that the Peccei-Quinn symmetries are spoiled by world-

sheet instantons,

[36]

although the instanton e�ects are exponentially suppressed

in the large radius limit, ImT ! 1, where T denotes the breathing mode of

the internal manifold (the overall radius).

y

Thus it comes as no surprise that our

result (2.19) for an orbifold vacuum reduces to formula (4.1) in the large-radius

limit. Indeed, the leading term in log(j�(T

i

)j

4

ImT

i

) in the ImT

i

! 1 limit is

�(�=3) ImT

i

, so this term in eq. (2.19) yields eq. (4.1) and �xes the constants

to be A

i

a

= (�=3)b

i

a

jG

i

j=jGj for the orbifold case. The next-to-leading term,

log(ImT

i

), violates the holomorphicity assumption for f

a

, although it is consistent

with the Peccei-Quinn symmetries. The moduli-independent contributions are

obviously consistent with both properties. Finally, the terms generated by Taylor

expanding the

Q

1

n=1

(1 � q

n

) factor in �(T ) are consistent with holomorphicity

but violate the Peccei-Quinn symmetries; these exponentially-suppressed terms

represent world-sheet instanton contributions.

Reference [33] considered the large-radius limit of the threshold corrections

in more detail, and showed that in some cases | e.g. the hidden E

8

left intact

in some Calabi-Yau compacti�cations | the constant of proportionality A

a

for

f

a

(T ) in eq. (4.1) could be related to the � function coe�cient b

(N=1)

a

. It was

recognized that this relation did not have to hold in more complicated compact-

i�cations, for example if Wilson lines broke the hidden E

8

, or for orbifolds | in

the latter case the lack of any such relation is con�rmed by the large-radius limit

of formula (2.19).

Finally, references [27] and [34] combined the form of a potential gluino con-

densate with duality invariance in order to constrain the possible form of f

a

for

orbifolds, using earlier results of ref. [37]. Under the assumption of a large-radius

y In the approximation considered in refs. [7,8], T was the only modulus present in the

massless spectrum.
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behavior similar to eq. (4.1) it was found that

�

a

= �b

(N=1)

a

� log

�

j�(T )j

4

ImT

�

; (4:2)

which bears a striking resemblance to eq. (2.19). However, the result (4.2) has

two serious problems: (1) The overall breathing mode T appears instead of the

T

i

that correspond to individual complex planes. (2) The � function coe�cient

appearing as a prefactor, b

(N=1)

a

, is that computed from the N = 1 supersym-

metric massless spectrum, and not the b

i

a

computed from the auxiliary N = 2

theories de�ned above. In particular, both papers are in contradiction with the

Z

3

and Z

7

orbifold examples, for which �

a

should not depend on any of the

untwisted moduli. Both papers employ as part of their analysis an e�ective su-

pergravity Lagrangian describing gaugino condensation; it is possible that the

problem arises at this stage.

?

Both papers attempt to explain the origin of the

non-holomorphicity of the f

a

(T;

�

T) deduced from (4.2). In ref. [27] the supercon-

formal compensator �eld for supergravity plays a role in the explanation. How-

ever, the explanation cannot account for the more complicated non-holomorphic

behavior of eq. (2.19); furthermore, we have shown that similar behavior occurs

in theories not coupled to gravity. Reference [37] proposes a rede�nition ofM

GUT

similar to eq. (2.16) in order to explain away the apparent non-holomorphicity of

eq. (4.2). We have already explained in section 2.3 that such a rede�nition is not

possible for N = 1 orbifolds, but even if it were possible, it would not help: Super-

symmetry is concerned with holomorphicity of the whole f

a

, and the logM

2

GUT

term in eq. (1.5) must be considered along with the threshold corrections �

a

when M

GUT

is moduli-dependent.

What can be said about higher-loop threshold corrections? In reference [8]

the Peccei-Quinn symmetry for the dilaton/axion �eld S, plus the dilaton's role

? Some subtleties in the e�ective supergravity approach will be discussed in ref. [12].
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as the string loop expansion parameter, were combined with a holomorphicity

requirement on f

a

in order to argue that all higher-loop corrections to f

a

vanish.

A similar conjecture was made in ref. [18] based on the relationship of f

a

with

the anomaly cancelling term. Serious doubt is cast on these arguments by the

nonholomorphicity of f

a

found in this paper, even at the one-loop level. Also,

because of the chiral anomaly, the Peccei-Quinn symmetry for S is equivalent

to an R symmetry

[4]

and one must be rather careful about the exact form of

the symmetry beyond one-loop; this is related to the \multiplet of anomalies"

discussed in refs. [38].

This paper also explained why the threshold corrections �

a

do not have to be

the real parts of holomorphic functions of the moduli, in contrast to naive expec-

tations based on supersymmetry. The explanation is important for understand-

ing the fermionic terms in the e�ective supergravity Lagrangian with bosonic

terms (1.1). The functions f

ab

appear in several places in the Lagrangian,

[2]

but

the form in which they appear is either f

ab;i

or Re f

ab

| the only place Imf

ab

ap-

pears undi�erentiated is where it multiplies the total derivative F

a

��

~

F

b��

in (1.1).

We showed in section 3 how the e�ective derivatives fg

�2

ab;i

g and f�

ab;i

g could

be well-de�ned at the quantum level, even if the angles �

a

= �8�

2

Imf

a

were

ill-de�ned. Therefore, despite the nonholomorphicity of f

ab

and the ambiguity

in its imaginary part, loop corrections to the fermionic terms in the e�ective

supergravity Lagrangian containing f

a

are completely unambiguous, and using

eqs. (1.7) and (1.8) they can all be expressed in terms of �

a

and its derivatives.

As mentioned in the introduction, the moduli-dependence of f

a

can become

particularly important if the running coupling g

a

(p

2

) becomes strong, both be-

cause it has an O(1) e�ect on the mass scale generated by dimensional transmu-

tation, and because it appears in the supergravity Lagrangian along with gaugino

bilinear operators that can condense at that mass scale. As a result, a potential

may develop that �xes the moduli to speci�c values.

[34;12]

Thus the �

a

we have
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computed in this paper could help generate through nonperturbative e�ects a

mass for the moduli (which remain massless in perturbation theory), and they

could also help �x those parameters of the low-energy theory (Yukawa couplings,

etc.) that depend on the moduli expectation values.

Acknowledgements: We would like to thank W. Lerche, J. Polchinski and espe-

cially B. Warr for many enlightening discussions.

APPENDIX A

In this appendix we simplifyB

a

(�; �� ) of eq. (2.2) for toroidal compacti�cations

of six-dimensional N=1 supersymmetric theories. This calculation essentially

repeats the analysis performed in ref. [18].

Any compacti�cation on T

2

of a supersymmetric six-dimensional heterotic

string vacuum has an internal SCFT that splits into two noninteracting pieces,

with (c; �c) = (2; 3) and (c; �c) = (20; 6).

[39]

The �c = 3 piece is represented by two

coordinates X

i

for T

2

, plus their right-moving fermionic partners 	

i

whose spin

structure is summed over together with that for 	

�

. For a given spin structure,

the partition function for this �c = 3 piece is therefore

Z

	

(s; �� ) � j�j

�4

^

Z

torus

(�; ��) ; (A:1)

where

^

Z

torus

(�; ��) �

X

(p

L

;p

R

)2�

2;2

q

p

2

L

=2

�q

p

2

R

=2

(A:2)&(2:9)

gives the contribution of the X

i

zero modes.

Unlike the �c = 3 SCFT, the �c = 6 SCFT is not completely determined;

however, it has an N = 4 superconformal symmetry which contains in particular
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an SU(2) Kac-Moody algebra at level 1. The spin structure sum couples only

[40]

to the free boson H that provides a Frenkel-Kac construction of that algebra.

?

This information will allow us to rewrite the sum over even spin structures in

eq. (2.2) in terms of the odd spin structure, i.e. as an index in the Ramond sector.

Identities relating sums over even spin structures to the odd spin structure have

been studied extensively in the literature,

[22;18]

so we will be very brief in the

following.

First consider the spin-structure-dependent piece of the partition function.

It is proportional to

X

even s

(�)

s

1

+s

2

Z

2

	

(s; ��) � Z

SU(2)

(s; r; ��) ; (A:3)

where both factors can be written in terms of the characters �

0

and �

1

for the

two SU(2) level 1 representations, with isospin 0 and

1

2

respectively:

Z

2

	

(0; 0) = ��

�2

X

m

1

;m

2

2Z

�q

1

2

(m

2

1

+m

2

2

)

= ��

2

0

+ ��

2

1

;

Z

2

	

(0; 1) = ��

�2

X

m

1

;m

2

2Z

(�)

m

1

+m

2

�q

1

2

(m

2

1

+m

2

2

)

= ��

2

0

� ��

2

1

;

Z

2

	

(1; 0) = ��

�2

X

m

1

;m

2

2Z

�q

1

2

((m

1

+

1

2

)

2

+(m

2

+

1

2

)

2

)

= 2��

0

��

1

;

(A:4)

and

Z

SU(2)

(0; s

2

; r) = (�)

s

2

r

� ��

�1

X

n2Z

�q

(n+

1

2

r)

2

= (�)

s

2

r

��

r

;

Z

SU(2)

(1; s

2

; r) = (�)

s

2

r

� ��

�1

X

n2Z

�q

(n+

1

2

(1�r))

2

= (�)

s

2

r

��

1�r

:

(A:5)

(The four-real-fermion partition functions Z

2

	

can be expressed in terms of the

? The same right-moving structure holds for any N = 2 supersymmetric four-dimensional

vacuum

[39]

; however, the zero-modes and left-moving parts of the two X

i

(if they exist)

will generally couple to the �c = 6 system.
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SU(2) characters because SO(4) = SU(2) 
 SU(2).) Here r = 0; 1 accounts for

the two di�erent types of spectral ow orbits

[41;22]

that can appear in the N = 4

superconformal theory. The vanishing of the partition function is due to

(�

2

0

+�

2

1

) � �

r

� (�

2

0

��

2

1

) � (�)

r

�

r

� (2�

0

�

1

) ��

1�r

= 0 for r = 0; 1: (A:6)

To calculate B

a

(�; �� ) we must replace Z

2

	

(s; �� ) in eq. (A.3) with

Z

	

(s; �� ) �

d

d��

Z

	

(s; �� ) =

1

2

�

d

d��

Z

2

	

(s; �� ):

The spin-structure-dependent piece is now proportional to the complex conjugate

of

( _�

0

�

0

+ _�

1

�

1

) � �

r

� ( _�

0

�

0

� _�

1

�

1

) � (�)

r

�

r

� ( _�

0

�

1

+ _�

1

�

0

) � �

1�r

(A:7)

= ( _�

1

�

0

� _�

0

�

1

) � (�)

r

�

1�r

for r = 0; 1;

where a dot denotes d=d� . The identity _�

1

�

0

� _�

0

�

1

=

1

2

�i�

4

gives a factor of

��

4

in B

a

that cancels the ��

�4

from the right-moving oscillator excitations of the

bosons X

�

and X;X . The remaining factor of (�)

r

�

1�r

allows us to interpret

the �c = 6 part of the result as a trace in the Ramond sector of the superconformal

theory, with the operator (�)

r

� (�)

F

inserted. That is,

B

a

(�; �� ) =

^

Z

torus

(�; ��) � C

a

(�; �� ) ; (A:8)

where

C

a

(�; ��) � �(q)

�4

� Tr

R

n

1

2

(�)

F

�Q

2

a

� q

H�

5

6

�q

�

H�

1

4

o

(c;�c)=(20;6)

: (A:9)

Massive fermions are not chiral; this is just as true in six space-time di-

mensions as in four. Since the operator (�)

F

int

determines the chirality of a
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space-time fermion, only massless fermions contribute to the trace in eq. (A.9).

Since all massless fermions have

�

h

int

= 1=4, their contribution does not depend

on �q. Therefore, C

a

does not depend on �� and is a holomorphic function of � .

To make this argument rigorous, consider the zero mode

�

G

0

of one of the four

world-sheet supersymmetry generators

�

G

A

(�z) for the �c = 6, N = 4 SCFT. For

every state jRi in the Ramond sector of the Hilbert space of that SCFT, either

�

G

0

jRi = 0, or the states

�

G

0

jRi and jRi have opposite values of (�)

F

int

. Hence,

only the states annihilated by the

�

G

0

contribute to the trace in eq. (A.9). But

�

G

2

0

=

�

H

(20;6)

�

1

4

, so all states that contribute to the trace in eq. (A.9) yield

contributions that do not depend on �� and C

a

(� ) is a holomorphic function.

?

APPENDIX B

This appendix contains the calculation of the integral (2.10). We start by

Poisson resumming the sum on m

1;2

in eq. (2.13). We then reinterpret the re-

sulting sum on four integers n

1;2

and l

1;2

(the latter replace m

1;2

) as a sum over

all integral two-by-two matrices; this sum can be written as

�

2

�

^

Z

torus

(�; T; U) =

X

A2Mat(2�2;Z)

e

�2�iT det(A)

� T

2

exp

 

��T

2

�

2

U

2

�

�

�

�

(1; U)A

�

�

1

�

�

�

�

�

2

!

:

(B:1)

Now consider two matrices A and A

0

related to each other by a unimodular

factor | A

0

= A � V , with V �

�

a b

c d

�

2 SL(2;Z). The contributions of these two

matrices to the sum (B.1) are related by the modular transformation �

0

=

a�+b

c�+d

.

The integral we are seeking is the integral of �

2

^

Z

torus

� �

2

with the modular

invariant measure d

2

�=�

2

2

, so instead of integrating the contribution of the matrix

? If only physical states contributed to C

a

, it would be a constant rather than a power series

in q. Terms with positive powers of q are contributed by non-physical states with

�

h = 0

and h = positive integer.
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A

0

over the fundamental domain � we can integrate the contribution of A over

V � | the image of � under the PSL(2;Z) modular transform associated with

V 2 SL(2;Z). Our strategy is therefore to partition the set of all matrices A into

orbits of the group SL(2;Z), pick a representative element A

0

in each orbit and

integrate its contribution over the union of V � for all V 2 SL(2;Z) that yield

distinct A � A

0

V .

The group SL(2;Z) has three types of orbits in the space GL(2;Z):

1) The zero orbit, consisting of a single matrix A = 0.

2) Non-degenerate orbits, consisting of matrices with non-zero determinants; for

these orbits, V

0

6= V

00

implies A

0

V

0

6= A

0

V

00

. Consequently, we integrate the

contribution of a representative matrix A

0

over the union of V � for all V 2

SL(2;Z); this union is 2�f� 2 C : �

2

> 0g | the double cover of the upper half

plane. We choose the representative non-degenerate matrices A

0

to have form

A

0

=

 

k j

0 p

!

; with k > j � 0; p 6= 0; (B:2)

there is a unique matrix of this form in every non-degenerate orbit.

3) Degenerate orbits, consisting of (non-zero) matrices with zero determinants.

All matrices of this kind can be written in the form

A =

 

j

p

!

� (c; d): (B:3)

This decomposition becomes unique up to an overall sign of j, p, c and d if

we require c and d to be mutually prime. All matrices in the same degener-

ate orbit have the same values of j and p (modulo overall sign); on the other

hand, (c; d) runs over all pairs of mutually prime integers. We choose represen-

tative matrices to have (c; d) = (0; 1); with this representation, A

0

V

0

= A

0

V

00

,
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V

0

=

�

1 m

0 1

�

� V

00

, �

0

= �

00

+m for some integer m. Consequently, we will inte-

grate the contribution of a representative degenerate matrix not over the double

cover of the upper half plane, but over the half-band f� 2 C : �

2

> 0;j�

1

j <

1

2

g;

to account for double-covering we sum over all (j; p) 6= (0; 0) even though (j; p)

and (�j;�p) label the same orbit of SL(2;Z).

Before we proceed with the orbit by orbit integration of the series (B.1), we

should verify that it is safe to interchange the order of summation and integration.

The convergence of the series is not uniform with � 2 �, but the only matrices

whose contributions to (B.1) do not decrease exponentially in the �

2

!1 limit

are those of the form

�

0 j

0 p

�

. Therefore, the remainder of the series converges

uniformly and can be integrated term by term or in any convenient combination,

but the contributions of the matrices with zeros in the �rst column have to be

summed together before the integration. Note that with the single exception of

A = 0, these are precisely the matrices we choose to represent the degenerate

orbits.

The contribution of the zero orbit to the integral (2.10) can be easily evaluated

to yield:

I

1

=

Z

�

d

2

�

�

2

2

T

2

=

�

3

T

2

: (B:4)

The contributions of the non-degenerate orbits total

I

2

= 2

X

0�j<k

p6=0

T

2

e

�2�iT �kp

�

+1

Z

�1

d�

1

+1

Z

0

d�

2

�

2

2

exp

�

�

�T

2

�

2

U

2

� jk� + j + pU j

2

�

: (B:5)

After evaluating a gaussian integral over �

1

, the sum on j becomes trivial and

the two terms labelled by (k; p) and (k;�p) become equal up to a �

2

-independent
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factor e

�4�T

2

kp

. Therefore,

I

2

=

X

k;p>0

2

�

e

�2�ikpT�4�kpT

2

+ e

2�ikpT

�

�

1

Z

0

d�

2

s

T

2

U

2

�

3

2

� e

��T

2

(k�

2

�pU

2

)

2

=U

2

�

2

=

X

k;p>0

2

�

e

�2�ikpT

+ e

2�ikpT

�

�

1

p

= �2

X

k>0

log

�

1� �q

k

T

�

� 2

X

k>0

log

�

1 � q

k

T

�

;

(B:6)

where q

T

� e

2�iT

and the integral is evaluated via the variable substitution

�

2

=

pU

2

2k

(y +

p

2 + y

2

)

2

. Together with the contribution of the zero orbit we

have

I

1

+ I

2

= �4Re log

�

q

1=24

T

1

Y

k=1

(1� q

k

T

)

�

� �4Re log �(T ) : (B:7)

Now consider the degenerate orbits which together yield

I

3

=

+1=2

Z

�1=2

d�

1

+1

Z

0

d�

2

�

2

2

2

4

T

2

X

j;p

0

exp

�

�

�T

2

�

2

U

2

jj + Upj

2

�

� �

2

� �(� 2 �)

3

5

; (B:8)

where �(� 2 �) is de�ned to be one when � 2 � and zero otherwise; the last term

accounts for the subtraction

^

Z

torus

� 1 in the integral (2.10) and is e�ectively

integrated over the fundamental domain � rather than the whole half-band. As

we mentioned above, we should compute the in�nite sum over (j; p) 6= (0; 0) before

computing the integral (or at least the integral over � 2 � that corresponds to

matrices

�

0 j

0 p

�

themselves rather than other members of their orbits). However,

we can interchange the order of summation and integration if we �rst multiply

every term in the integrand of (B.8) by a regulating factor that makes the sum
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uniformly convergent with respect to some �nite measure. Using the regulator

(1� e

�N=�

2

), which we will eventually remove by taking N !1, we obtain

I

3

= lim

N!1

2

4

U

2

�

X

j;p

0

 

1

jj + Upj

2

�

1

jj + Upj

2

+

NU

2

�T

2

!

�

Z

�

d

2

�

1� e

�N=�

2

�

2

3

5

:

(B:9)

The latter integral can be evaluated by substituting �

2

= N=x, multiplying the

integrand by x

�

and taking the limit � ! +0; the result is logN + 

E

+ 1 +

log(2=3

p

3), where 

E

is the Euler-Mascheroni constant.

To evaluate the sum over (j; p) 6= (0; 0), we sum on j �rst and make use of

the formula

+1

X

j=�1

1

(j +B)

2

+ C

2

=

i�

2C

[cot�(B + iC) � cot�(B � iC)] ����!

C!+1

�

C

:

After some regrouping of terms, we arrive at

U

2

�

X

j;p

0

 

1

jj + Upj

2

�

1

jj + Upj

2

+

NU

2

�T

2

!

(B:10)

=

�

3

U

2

+

X

p>0

2

p

q

p

U

1� q

p

U

+

X

p>0

2

p

�q

p

U

1� �q

p

U

+

X

p>0

 

2

p

�

2

p

p

2

+ (N=�T

2

U

2

)

!

;

where q

U

� e

2�iU

and the �rst term on the right hand side comes from summing

over j 6= 0 for p = 0; notice that all three series on the right hand side are

convergent. We �nd it convenient to resum the �rst two series using

X

p>0

1

p

q

p

1 � q

p

=

X

p;n>0

q

pn

p

= �

X

n>0

log(1 � q

n

) :
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As to the last series, in the large N limit it becomes

X

p>0

 

2

p

�

2

p

p

2

+ (N=�T

2

U

2

)

!

� 2

X

p>0

�

1

p

� log

p+ 1

p

�

+

1

Z

1

dp

 

2

p

�

2

p

p

2

+ (N=�T

2

U

2

)

!

+ O(1=

p

N)

���!

N!1

2

E

+ log

N

4�T

2

U

2

:

Substituting the last two formul� into (B.10), then (B.9), we obtain

I

3

= �4Re log �(U) � log(T

2

U

2

) +

�



E

� 1� log

8�

3

p

3

�

: (B:11)

Combining this result with eq. (B.7), we �nally achieve the goal of this ap-

pendix: The explicit expression for the threshold correction as a function of

toroidal moduli is

�

a

(T; T ; U; U) = �b

a

� log

�

8�e

1�

E

3

p

3

� T

2

j�(T )j

4

� U

2

j�(U)j

4

�

: (B:12)&(2:14)
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