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Abstract

In this thesis we study some recently proposed generalized compactifications which are
known as compactifications with background fluxes. We start from type II theories in
ten dimensions and show that such compactifications lead to massive supergravities and
thus they preserve some supersymmetry. As a byproduct we find a way to reconcile
symplectic invariance with gauged supergravities by coupling two-form fields to both
electric and magnetic field strengths. Furthermore we study mirror symmetry in such
compactifications and we show that this holds naturally in the case of RR fluxes. For
the case of NS-NS fluxes we propose some generalized Calabi–Yau manifolds which are
termed half-flat manifolds with SU (3) structure and we show that by performing the
KK compactification on such manifolds one indeed obtains the mirror of the NS-NS
three-form fluxes.

Zusammenfassung

In dieser Arbeit betrachten wir allgemeinere Kompaktifizierungen, wie sie kürzlich vorge-
schlagen wurden, nämlich Kompaktifizierungen mit Hintergrundflüssen. Ausgehend von
Typ II String Theorien in zehn Dimensionen zeigen wir, dass solche Kompaktifizierungen
zu massiven Supergravitationstheorien führen und somit einen Teil der Supersymme-
trie erhalten. Nebenbei finden wir eine Möglichkeit symplektische Invarianz mit gee-
ichter Supergravitation in Einklang zu bringen, indem wir die 2-Form-Felder sowohl mit
elektrischen als auch mit magnetischen Feldstärken koppeln. Außerdem betrachten wir
Mirror-Symmetrie für solche Kompaktifizierungen, und wir zeigen, dass diese Symmetrie
auf natürliche Weise im Falle der RR Flüsse erfüllt ist. Für den Fall von NS-NS Flüssen
schlagen wir eine Verallgemeinerung der Calabi-Yau Mannigfaltigkeiten vor, sogenannte
Half-Flat Mannigfaltigkeiten mit SU(3) als Strukturgruppe, und wir zeigen, dass man
durch KK-Kompaktifizierung auf solchen Mannigfaltigkeiten wirklich das Spiegelbild mit
NS-NS 3-Form Flüssen erhält.
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Chapter 1

Introduction

1.1 High energy physics: An overview

There is one fascinating question which people have asked since ancient times: What
are the elementary building blocks of the world we live in? Despite the oldness of this
question and of the progress which was done in understanding the structure of the matter
a definite answer is missing so far. All the experimental results seem to point towards the
fact that everything we can see is made out of quarks and leptons and their interactions
are governed by the Standard Model of Particle Physics. However there are good reasons
to believe that this is not the end of the story.

The standard model is a gauge theory based on the group SU (3)C×SU (2)W ×U(1)Y

with matter content (quarks and leptons) which falls into three distinct families (for a
review see [1]). It can explain any fact in particle physics up to energies of order 100
GeV and its predictions have been confirmed by numerous experiments. Despite its great
success there are definitely things which deserve an explanation. First of all it contains
19 free parameters which reduce its predictive power. Moreover in order to reproduce the
experimental data one has to fine tune some of these parameters1 or create arbitrary large
hierarchies between parameters of the same type facts which do not have a satisfactory
explanation. There are also other questions like Why precisely three families? or How is
the gauge group chosen? which make one think that there should be something beyond
the Standard Model. There were several attempts to find an extension of the standard
model, but this proved very difficult because of the strict constraints imposed by the
several precision tests. Moreover beside these ‘theoretical’ arguments no experiment
up to the present energies could indicate that there is indeed some physics beyond the
standard model and what the nature of this physics is.2

1It is well known that the renormalization group drives the mass of scalar particles (the Higgs boson
in this case) to the highest scale in the theory. Thus, if the standard model is supposed to be true even
at higher energies one has tune this mass with a high precision in order to keep it at the level of the
weak scale.

2Strictly speaking the recently discovered neutrino masses are part of the physics beyond the standard
model. However in this case there are simple mechanisms which could account for small neutrino masses

1
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One of the ideas for extending the Standard Model was to implement a symmetry,
known as supersymmetry, between bosons and fermions. There are many attractive
features of the supersymmetric standard models one of the most important being that
a natural protection of the Higgs mass appears and so there is no need to fine-tune this
parameter anymore. The price to be payed is on the other hand also big. As the particles
discovered up to now do not come in super-multiplets in order to make this symmetry
work one needs to introduce superpartners for all the known particles and thus (at least)
double the number of elementary particles. The number of parameters blows up (in the
minimal model being bigger than 100) and several other ’ad-hoc’ mechanisms have to be
introduced in order to avoid severe problems like the proton decay.

Another appealing extension of the standard model are the Grand Unified Theories
(GUT) [1]. The main idea behind such models is that provided nothing new happens
between the weak and the GUT scale the Standard Model descends from an unified theory
which has a bigger gauge group such as SU(5) or SO(10). Due to their large amount
of symmetry these models are very predictive. In particular it means that the evolution
with the energy scale of the three coupling constants (strong, electro-magnetic and weak)
of the standard model due to the renormalization group equations should be in such a
way that the three curves meet at a point which gives the GUT scale. It is interesting to
note that even if the standard model fails to satisfy this minimal requirement the three
couplings come really closed together at an energy scale of order 1015 GeV. In the minimal
supersymmetric extension of the standard model the meeting of the coupling constants
does indeed occur at a slightly higher scale, namely 1016 GeV. This could indicate that
that if the GUTs describe the physics beyond the standard model, supersymmetry might
also play an important role. It is interesting to note that some of the quantum numbers
of the standard model particles (like the U(1)Y charges) have a natural explanation if
one regards them as descending from GUT multiplets. Moreover in the context of grand
unified theories one can easily generate tiny neutrino masses.

Despite the nice features of the grand unified theories one cannot neglect the problems
which they generate. In particular one of the most serious problems is the fact that the
proton is unstable even at tree level. Thus the only suppression of this effect comes from
the high scale of these models and the generic life time for the proton in such models
is about to be reached by the present experiments. There are also theoretical problems
which one encounters in such models like the fact that ‘nothing new’ happens over a
range of 1015 orders of magnitude or the doublet triplet splitting problem.

To make a long story short no truly viable extension of the standard model is known
at present and it appears that a more complicated physics is hidden beyond the standard
model picture. There is another aspect which we have totally neglected until now which
seems to point in the same direction: gravity.

At a classical level the gravitational interactions are described with high accuracy
by Einstein’s theory of general relativity (see for example [2]). However there are again
reasons to suspect that there is something else behind. First of all the theory of general
relativity is a classical theory which we can only believe if the gravitational fields are

without drastic changes in the structure of the standard model.
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Figure 1.1: a) Particle vs. (closed) string propagation. b) Particle vs. string interaction

not too strong. This is definitely the case in most of the applications of particle physics,
astrophysics, or even cosmology. Nevertheless in order to describe strong gravitational
fields (like near black holes, or at very high energies) one would really need a quantum
description of gravity and such a theory has not been constructed until now. Moreover
we would also like to have unified description of all interactions in nature and for this
one again needs a quantum version of gravity.

It is also worth mentioning that the picture we have about the physics at 100 GeV
where the gravitational interactions decouple from the standard model features one of
the biggest fine tuning problem ever encountered. Even if gravity plays no role in the
standard model the converse is not true. The reason is that the vacuum expectation
value of the Higgs field which gives masses to all the particles in the standard model
is also the source of a vacuum energy which curves the space. As a result the naive
cosmological constant is 60 orders of magnitude bigger than the observed value and in
order to agree with experiments one has to add by hand a negative cosmological constant
which is tuned with the precision 1 into 1060 (see for example [3]).

All the arguments we have presented up to now seem to indicate that a ‘bottom-up’
approach is difficult to adopt in this case and one would need a more drastic change
in the way of thinking. One of the most promising candidates at the moment is the
theory of (super)strings. Strings are one dimensional extended objects which sweep out
a two-dimensional surface, known as world sheet, in a D dimensional space which is also
called the target space. depending on their boundary conditions the string can be closed
or open. The action which describes the movement of the string is a (super)conformal
two dimensional non-linear sigma-model whose only free parameter is the string tension
which is commonly denoted by 1/

√
α′. In the limit α′ → 0 the string tension becomes

infinite and thus the string shrinks to a point. In this limit string theory reduces to an
ordinary field theory. The difference between string and field theory can be visualized as
in figure 1.1.

Consistency of string theory at quantum level imposes very strict constraints on the
theory itself. In particular the absence of the Weyl anomaly implies the existence of a
critical dimension which is the dimension of the space in which the string can consis-
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tently propagate. For the purely bosonic string the critical dimension is 26 while for the
superstring it turns out to be 10. Moreover the quantum conformal invariance requires
that the geometry of the target space has to be Ricci flat.

This is a very surprising result as up to now the space-time was chosen by hand
while now it seems to be imposed by the consistency of the theory we consider. The
drawback of this fact is that in neither of the cases discussed above the space time is four
dimensional as it appears to be according to our observations. This will turn out to be
one of the major difficulties in trying to make contact with the real world and we will
discuss this subject at large as it is one of the central themes of this work.

Starting with such a theory the particles in the D-dimensional space-time can be
thought as excitations of the string. As the only scale in the theory is 1/

√
α′ which is

supposed to be large the masses of these modes will typically be of this order. Thus
the only interesting excitations for low energy physics are the massless ones. However it
turns out that for the case of the bosonic string the lowest mass state is in fact a tachyon
(it has negative mass square) which reveals some inconsistency of the theory. For the
superstrings this is not the case and the first excited states correspond to massless par-
ticles. Thus from now on we will only concentrate on the superstrings and we implicitly
assume that the space-time is ten-dimensional.

One of the major observations was that among the excitations of the string one
usually finds a state with spin 2 which was immediately identified to the graviton. Thus
one hopes that string theory can be a consistent description of quantum gravity.

It appears that in ten dimensions there are five consistent string theories which are
denoted as: type IIA, type IIB, heterotic E8 × E8, heterotic SO(32) and type I. They
are all supersymmetric and beside the spin two state which we mentioned above, there
are several other massless excitations which assemble themselves into representations
of the supersymmetry algebra in ten dimensions. Moreover it turns out that the low
energy description of any superstring theory (i.e. α′ → 0 limit) is the corresponding
supergravity in ten dimensions. Thus, it appears natural to consider string theory as a
candidate for a theory which in the low energy limit can reproduce the theories we know
in four dimensions: the standard model and the theory of general relativity. In the next
section we will present a couple of ideas in this direction.

1.2 Lower dimensional models

In the previous section we argued that string theory is one of the most natural candidates
for a unified quantum theory of all interactions. It is indeed very attractive to study it
as it has only one free parameter which is the string scale

√
α′ and thus it can be a

very predictive theory. As we have seen that gravity is automatically included in a low
energy approximation it is natural to relate the string scale to the Planck scale. This
means that it will be difficult to see stringy effects in the future experiments and thus
the best one can do at the moment is to find an appropriate limit in which the string
theory reduces to the known theories in four dimensions, namely the standard model and
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general relativity. However this is not a straightforward exercise and in the following we
will sketch the main ideas of obtaining phenomenologically interesting models starting
from a ten-dimensional string theory.

First of all even though it seems that string theory is a very restrictive theory very
few things are known about its vacuum structure apart from the fact that the space in
which it moves should be a ten dimensional Ricci flat manifold. This is in fact one of
the biggest problems which are faced nowadays in string theory which is known as the
vacuum selection problem.

Of course what one would expect is that the vacuum exhibits a splitting of the ten
dimensional coordinates into four which constitute the world we observe and some hidden
six dimensions. The structure of these six hidden coordinates is very poorly understood
and at the moment there are roughly two main ideas: one where it is assumed that the
six extra dimensions are compact and small and escaped our observations until now and
the second which states that we are in fact living on a four dimensional hyper-plane
(D-brane) embedded in ten dimensions and again the extra dimensions have not been
observed until now. The first scenario is termed of Kaluza–Klein compactifications and
the second braneworld models. In the following we give a brief description of each of
them.

1. Kaluza-Klein reductions.

Kaluza-Klein (KK) compactifications is one of the main topics of this thesis. The idea
is based on the observation made by Kaluza in 1920 that pure gravity in five dimensions
can be interpreted from a four dimensional point of view as gravity coupled to an electro-
magnetic field and a scalar, provided that the fifth dimension is compact and its size is
taken to be small. We review this example in more detail in appendix D.1 and here we
outline how this can help us to obtain four dimensional models.

The basic assumption is again to consider that some of the ten dimensions are actually
small and compact and only four are extended and can be observed. Consequently one
chooses the then dimensional space to be a direct product of a four dimensional one
(which is often chosen to be just the flat Minkowski space) and some internal unknown
manifold K6

M10 = R1,3 ×K6 (1.1)

This is equivalent to choosing a background metric which is a direct product between a
four dimensional Minkowski metric and some metric on the internal manifold

ĜMN =

 ηµν 0

0 gint
mn

 , (1.2)

where gmn has to solve the Einstein equations for the particular background field con-
figuration which is chosen. It turns out that the ten dimensional fields give rise in four
dimensions to infinite towers of states whose masses are multiples of 1/R, where R is the
generic size of the extra dimensions. In a low energy approximation one only keeps the
massless fields which correspond to harmonic forms on the internal manifold. Performing
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the integration over the internal space one obtains the low energy effective action which
describes the truncated theory in four dimensions. One of the first questions which can
be asked is how small the additional dimensions are. As the masses in the KK tower
crucially depend on the size of the internal manifold it implies that the existence of extra
dimensions is constrained by the four dimensional physics. In particular just from the
fact that no massive states which fit in the KK pattern were observed one infers that
the compactification radius has to be small enough so that the corresponding states are
heavier than the present energies obtained in the laboratory. However from the weak to
the Planck scale there is a broad spectrum of choices for the dimension of the internal
manifold which is in principle not fixed. Note that in this approach the string scale 1/

√
α′

is in general fixed to be of the order of the Planck scale.

The setup we have just presented is in some sense very arbitrary as the existence of
four large dimensions and six small, compact ones is imposed by hand while in string
theory there is no mechanism which can fix this. In fact this seems to be a big puzzle as
there is no way one can fix the geometry of the ten dimensional space.3 The structure of
these internal dimensions is again a delicate problem: beside the constraint on the ten
dimensional manifold that it should be Ricci flat there is no other indication that string
theory prefers any particular geometry for the internal directions. Usually one makes
a choice for the background field configuration like in (1.2) according to the desired
properties of the four dimensional theory.

2. Braneworlds.

Even though in the rest of this work we are going to concentrate on the ‘traditional’
approach of string compactifications let us address for completeness some other possi-
bilities to obtain four dimensional models from string theory. After the discovery of
D-branes (for a review see for example [5]) in 1995 a lot of work was devoted to the idea
of realizing the standard model on a 3-brane which lives in the ten-dimensional bulk.
Here we briefly review, without going into details, some of the ideas which are used in
such scenarios.

First of all the branes are supersymmetric objects and in general they preserve half
of the bulk supersymmetry. In this way one can find an alternative for reducing the
large amounts of supersymmetry with which string theory comes in ten dimensions.
Combining branes with internal manifolds of special holonomy one easily obtains models
with N = 1 supersymmetries in four dimensions. Second of all the open strings which
end on the branes give rise to gauge fields. Considering more branes which are coincident
one obtains non-Abelian gauge groups which can even contain the standard model gauge
group. Obviously this opens up a large variety of possibilities for obtaining viable models.
For the case that the dimensions transverse to the brane are compact the string scale
is no longer fixed but it dramatically changes with the volume of the extra dimensions.
In particular one can obtain models where the string scale is of order of TeV which tell
us that unlike the traditional approach the stringy effects could be around the corner

3In [4] it was argued that starting with ten small dimensions around which strings can wrap one
naturally ends up with a configuration where four of the dimensions extend to infinity while the other
six remain small.
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waiting to be discovered in the future experiments.

Another interesting direction was revealed in [6, 7] where the extra dimensions are
not compact but the geometry includes a warp factor which exponentially goes to zero
away from the brane. In this way even if the extra dimensions extend to infinity the warp
factor ensures that this can not be noticed from the point of view of the brane-observer
and the volume of the extra dimension space is effectively finite.

Recently very attractive ideas have appeared which are based on the observation made
in [8] that at brane intersections chiral fermions may appear. This opened up a whole
set of possibilities for obtaining the standard model spectrum using such configurations.

1.3 Dualities and mirror symmetry

Let us now come back to the traditional approach, namely compactification of the extra
dimensions. For phenomenological reasons the E8 × E8 heterotic string appeared to be
the most promising theory due to the fact that its gauge group can easily accommodate
the standard model group or even GUT groups. In particular in the mid ’80s there
were several attempts to construct four-dimensional models by compactifications of the
heterotic string which preserved one quarter of the original amount of supersymmetry,
namely N = 1 in four dimensions [9]. This was done by choosing the internal manifold
to be a Calabi–Yau space i.e. a manifold with SU (3) holonomy. However a question
still remains: How do we choose precisely the heterotic string and what role do the other
string theories play? The answer seems to come from a surprising direction. It turns
out that the vacua of these theories are related or in other words there are some duality
maps which connect the different string theories among themselves (for a review see [10]).
This is a very interesting feature which is specific to string theories and which has many
applications.

Roughly speaking these dualities can be split into two major classes: perturbative and
non-perturbative ones. The perturbative dualities relate two theories at small couplings
while the non-perturbative ones relate the weak coupling regime of one theory to the
strong coupling regime of the other. For example it is known that type IIA and type
IIB theories compactified on a circle are equivalent. Moreover the same happens with
the two heterotic strings. On the other hand type IIB theory exhibits a symmetry which
exchanges the weakly coupled regime with the strongly coupled one.

A special role among the web of dualities is played by the so called mirror symmetry
(for a review see [11, 12]). As this will be one of the main topics of this thesis let us
shortly introduce the basic notions.

From a physical point of view mirror symmetry states that for any Calabi–Yau mani-
fold Y there exist another Calabi–Yau manifold Ỹ such that type IIA theory compactified
on Y is equivalent to type IIB compactified on Ỹ . Even if at a first glance this does not
seem to be very surprising the implications of the above statement are far reaching. In
particular we will see later on the vector fields in type IIA compactification come in one
to one correspondence with the harmonic (1, 1) forms and thus they are counted by the
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elements of (1, 1) cohomology group whose dimensions is denoted by h(1,1). In type IIB
theory on the other hand the vector fields are related to the cohomology group H2,1(Y )
which has dimension h(2,1). Identifying the vector field sectors in the two theories leads
to the first major implication of mirror symmetry that the odd and even cohomologies
are exchanged. Consequently we have

h(1,1)(Y ) = h(2,1)(Ỹ ) ; h(2,1)(Y ) = h(1,1)(Ỹ ) . (1.3)

In fact this is part of a much stronger statement namely that the moduli spaces of Kähler
and complex structure deformations have to be interchanged.

From a mathematical point of view this is a highly non-trivial statement as it is
not at all clear a priori that the Calabi–Yau manifolds should really come in mirror
pairs which we stress again are manifolds with different topology. On the other hand if
one interprets the Calabi–Yau compactifications as superconformal sigma models with
Calabi–Yau target space the difference between the mirror manifolds is just a convention
for a U(1) current4.

It is a remarkable fact that mirror symmetry can be used to compute quantities
(like Yukawa couplings) which otherwise would have been inaccessible. Moreover as the
equivalence of type II theories on mirror manifolds is supposed to hold at quantum level
one can obtain in special cases fully corrected quantities on the mirror side. A typical
example is the N = 2 prepotential which in type IIB theory can be computed exactly
(i.e. it does not receive world sheet instanton corrections). In type IIA theory on the
other hand the prepotential does receive corrections from the world sheet instantons and
these corrections are in general difficult to compute. However using mirror symmetry
one can obtain the fully corrected prepotential.

Assuming fully equivalence of the theories at the non-perturbative level one can obtain
the most intuitive interpretation of mirror symmetry. It was argued in [13] that mirror
manifolds can be viewed as T 3 fibers over a three-dimensional base and that mirror
symmetry is nothing else but T-duality along the T 3 fibers. However for the purposes of
this work we will only use a simpler picture of mirror symmetry. More precisely we work
in the supergravity approximation which is valid in the limit of large volumes. In this
limit the world sheet instanton corrections can be neglected5 and we will reduce mirror
symmetry to a map between different low energy effective actions.

1.4 Topics and organization of the thesis

As we have seen in section 1.2 nowadays there exist several ideas to obtain models which
can be interesting from a phenomenological point of view by starting from string theory.

4One should bare in mind that the above argument can not be a rigorous proof as it is not clear that
any sigma model has the geometric interpretation of a Calabi–Yau compactification.

5This kind of corrections come with a weight e−t where t is a generic Kähler modulus which gives
the size of the Calabi–Yau manifold and thus going to a point in the moduli space where the vacuum
expectation value of t is large enough one can neglect such contributions.
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Nevertheless in this thesis we will only concentrate only on the Kaluza–Klein approach.
Extended supersymmetry in four dimensions is inconsistent with observations and thus
one needs to break in the compactification some of the supersymmetry which is present
in ten dimensions. The way to do this is to consider manifolds with special holonomy.
As we are only going to study six dimensional internal manifolds Calabi–Yau spaces are
the most natural candidates as they preserve only one quarter of the total amount of
supersymmetry present in ten dimensions.

It is well known that Calabi–Yau compactifications on the other hand generically lead
to a series of problems. First of all as we will see later, a large number of moduli (scalar
fields which are flat directions of the potential) appear in the four-dimensional effective
action. These moduli can have arbitrary vacuum expectation values and this reduces
dramatically the predictive power of string theory. Furthermore one would also need a
mechanism to further break the residual supersymmetry. Generically if no potential is
present this can not happen. This will motivate the first part of this work as we will argue
that allowing for some more general compactifications a potential for some of the moduli
can be generated. In these generalizations fluxes of some p-form field strengths through
internal cycles are generated and that is why we will denote these compactifications as
compactifications in the presence of background fluxes.

Thus in the first part of this work we show how to perform the Calabi–Yau com-
pactification when background fluxes are turned on. We explicitly derive the low energy
effective action for several cases and show whenever it is possible that such compactifi-
cations lead to known gauged supergravities in four dimensions.

The second main topic of this work is mirror symmetry. As we have argued in the
previous section there is a precise relation which maps the low energy effective action of
type IIA into the one of type IIB. The question on which we focus in this second part is
whether mirror symmetry still holds when fluxes are turned on. We will see that in some
cases mirror symmetry requires the presence of some ‘generalized’ Calabi–Yau manifolds.

The structure of the thesis is as follows. Chapter 2 is intended to be an introduction to
the main features of Calabi–Yau compactifications of type II theories. We start by giving
a short description of N = 2 supersymmetry in ten (section 2.1.1) and four dimensions
(section 2.2). We also introduce the two type II theories in ten dimensions in sections
2.1.2 and 2.1.3 and some notions about Calabi–Yau spaces and their moduli space in
section 2.3. Then in sections 2.3.3/2.3.4 we derive the low energy effective actions of
type IIA/IIB compactified to four dimensions on Calabi–Yau three-folds. We end this
discussion by showing that as expected from mirror symmetry the low energy effective
actions of type IIA and type IIB supergravities compactified on mirror manifolds coincide.
We close the chapter with a short discussion which motivates the further work.

In chapter 3 we start the study of compactification with fluxes. We consider the
type IIA theory and we focus on the derivation of the low energy effective actions and
on the differences which appear compared to the usual compactifications from section
2.3.3. We split the discussion in two parts: NS-NS fluxes in section 3.2 and RR fluxes
in section 3.3. We explicitly compute the scalar potentials and the new couplings which
are generated in this way and compare these results with what one expects to find from
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gauged supergravity.

In the next chapter we concentrate on mirror symmetry. We perform the compactifi-
cation of type IIB theory with fluxes and show that for the case of RR fluxes (section 4.1)
one precisely obtains a low energy effective action which is mirror to the one obtained
in type IIA with RR fluxes. For the NS-NS fluxes we conclude that a more general
configuration has to be considered in order to recover mirror symmetry.

In the last chapter of this work we present some ideas of who one can generalize the
setup from chapters 3 and 4 in order to reconcile mirror symmetry with the presence of
NS-NS fluxes. It will turn out that different geometries have to be considered and what
we will focus on will be the so called half-flat manifolds with SU (3) structure. In order to
understand better such spaces and see how the mirror of the NS fluxes can appear we will
first give a short overview of manifolds with SU (3) structure and then concentrate on the
particular subclass of half-flat manifolds in section 5.1. In the following section, 5.2 we
describe how to perform the KK reduction on such spaces. In particular in sections 5.2.2
and 5.2.3 we derive the low energy effective actions of type IIA and type IIB theories
compactified on half-flat manifolds and show that these are indeed the configurations
mirror to the corresponding compactifications with NS fluxes found in sections 3.2 and
4.2. However it appears that only half of the NS fluxes can be reproduced in this way
and in the last section 5.3 we present some arguments about how to further generalize
the half-flat spaces in order to accommodate the mirror of all NS fluxes which can be
turned on.

The conclusions of this work are presented in chapter 6.

In order to ease the understanding of the above-mentioned subjects we assembled at
the end a couple of appendices. First in appendix A we record the conventions we use
throughout this thesis. In appendix B we give a short overview of the N = 2 super-
gravities in four dimensions and then in B.2 we describe the related special geometries
which arise from the moduli spaces of Calabi–Yau manifolds. In appendix C we give a
short introduction into the mathematical machinery which we need in chapter 5. We
also compute the Ricci scalar of half-flat manifolds which we use in the derivation of the
scalar potentials in this chapter. The main features of KK reductions are presented in
appendix D including the dualization of different p-form fields in four dimensions.

The contents of this thesis are based on the research performed in the period
2000–2003 and which was published in some scientific articles. In particular chapters
3, 4 are entirely based on [14], though some features can also be encountered in a pre-
vious publication [15]. The second part of this thesis, chapter 5, is based on the work
performed in [16,17].



Chapter 2

Calabi–Yau compactifications of
type II theories

In this chapter we give a short review of the Calabi–Yau compactifications of type II string
theories. We start by recording the structure of the type II theories in ten dimensions
in section 2.1 and then we present in section 2.3 the main features of their Calabi–Yau
compactifications. We end this chapter with a discussion of the results obtained which
will motivate the developments in the following chapters.

2.1 Type II theories in ten dimensions

2.1.1 Supersymmetry in ten dimensions

As we have pointed out in the introduction all consistent string theories in ten dimen-
sions are supersymmetric and their low energy effective actions are the corresponding
supergravities. As we are going to study these theories in quite some detail let us first
start with some basic notions about supersymmetry/supergravity in ten dimensions. The
physical states in the theory are given by (massless) representations of the supersymmetry
algebra (we do not take into account the central charges){

Q, Q̄
}

= 2PM · ΓM , M = 0, . . . , 9 , (2.1)

where Q and Q̄ are the supercharges, P denotes the momentum and Γ are gamma matri-
ces. The minimal amount of supersymmetry in D dimensions is given by the dimension
of the smallest irreducible spinor representation of the Lorentz group SO(1, D−1). In ten
dimensions one can define spinors which obey both Majorana and Weyl constraints [18,19]
and such a spinor has 16 real components. Consequently the minimal amount of super-
symmetry in ten dimensions which we denote by N = 1 has 16 real supercharges.

Let us now see how one can construct massless representations of the supersymmetry
algebra (2.1). It is a well known fact that for massless states the supersymmetry algebra
implies the vanishing of half of the supercharges [20, 21]. Thus the massless states are

11
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constructed using only eight supercharges which form a spinor representation of the little
group SO(8). The simplest representation is given by the the vector (super)multiplet
which consists of a vector field AM and a spinor λ+. It is not hard to check that the
number of bosonic and fermionic degrees of freedom coincide. Knowing that the physical
states are counted by the little group one sees that a vector in ten dimensions has 8
degrees of freedom which is precisely the same as the degrees of freedom of an SO(8)
spinor. In order to construct higher spin representations one considers tensor products of
the vector multiplet representation with other SO(8) non-trivial representations [20, 22]
and the result can be summarized in table 2.1. ĝMN denotes the metric, Ψ±

M are grav-

Multiplet Bosons Fermions

vector ÂM λ±

graviton ĝMN , B̂MN , φ̂ Ψ+
M , λ

+

gravitino l, ĈMN , Â
∗
4 Ψ+

M , λ
+

gravitino ÂM , ĈMNP Ψ−
M , λ

−

Table 2.1: N = 1 supermultiplets in ten dimensions.

itinos, λ± are spinors, φ̂ is the dilaton, l is a scalar, Â, B̂, Ĉ are totally antisymmetric
tensors of various degrees.1 The ± superscripts denote the chirality of the spinors and
∗ denotes the fact that Â4 has a self-dual field strength. Note that there are two in-
equivalent gravitino representations which differ in the bosonic content and the spinors
have opposite chiralities. As we will see in a while this leads to two inequivalent theories
one can construct in ten dimensions. In what follows we are going to be interested in
extended supersymmetry in ten dimensions, namely N = 2 which is equivalent to 32 real
supercharges. The massless representations in this case are straightforward to determine
by putting together the representations found above. Before we list these representations
let us make few comments on N = 2 supersymmetry in ten dimensions. The lowest spin
representation necessarily contains a spin 2 particle – the graviton. Thus in such theories
there are no vector multiplets and the graviton multiplet incorporates all particles with
spin less or equal to 2. Moreover since it is not known how to consistently couple to
gravity particles with spin higher than 2, the amount of 32 supercharges is the maximum
supersymmetry one can deal with.

As mentioned above the two inequivalent gravitino representations found in table 2.1
lead to two different N = 2 multiplets and consequently to two different N = 2 theories
in ten dimensions. They are known as type IIA and type IIB theories.

Type IIA theory is non-chiral in the sense that one chooses the gravitino multiplet
which has opposite chirality to the gravitino sitting in the graviton multiplet. Thus the
massless spectrum in this case comprises the metric ĝMN the two-form B̂2, the dilaton
φ̂, a one and a three-form Â1 and Ĉ3 while the fermionic components are given by two

1Hats are used in order to be consistent with the later conventions that hatted quantities live in ten
dimensions.
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gravitini Ψ±
M and two spin 1/2 fields λ±.

Type IIB theory is known as the chiral type II theory and its massless modes are the
metric ĝMN the two-form B̂2, the dilaton φ̂, and zero, two and four-forms l, Ĉ2 and Â4

two gravtini Ψ+
M and two spin 1/2 fields λ+.

In what follows we will neglect the fermions and look only at the bosonic modes.
We will however keep in mind that the theories are in fact supersymmetric and that the
fermionic parts can be obtained using supersymmetry. Before we move on let us make
one more comment. In type II string theories the massless bosonic fields described above
arise from two different sectors known as Neveu-Schwarz–Neveu-Schwarz (NS-NS) and
Ramond-Ramond (RR) respectively. The (bosonic) fields in the graviton multiplet in
table 2.1 come from the NS-NS sector while the ones in the gravitino multiplets appear
from the RR sectors. Thus the NS-NS sectors of the two type II theories are identical
while the distinction comes only from the RR sectors. Type IIA contains odd form fields
Â1 and Ĉ3 with even form field strengths F̂2 and F̂4, while in type IIB one encounters
even form fields l, Ĉ2, Â4 with odd form field strengths dl, F̂3, F̂5.

In the next subsections we give a brief review of the dynamics of the two type II
theories in ten dimensions whose spectra we described above. Before starting let us make
a couple of remarks regarding our conventions. We use a units system where the Planck
constant, the speed of light and the Newton constant are taken to be equal to the unity.
Throughout the thesis we use differential form notation which we record in appendix A.
As we mainly compactify theories from ten to four dimensions we distinguish the fields
by using hatted symbols for the fields in ten dimensions. The Hodge star operator will
be encountered in ten, six and four dimensions. However we do not introduce different
notations for these cases as it should be quite clear from the context on what spaces this
operator acts.

2.1.2 (Massive) Type IIA theory

For the case of the type IIA theory, the bosonic action is given by [21]2

S10 =

∫ [
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2dφ̂ ∧ ∗dφ̂− 1

4
Ĥ3 ∧ ∗Ĥ3

)
−1

2

(
F̂2 ∧ ∗F̂2 + F̂4 ∧ ∗F̂4

)
+ Ltop

]
, (2.2)

where the field strengths are defined as

F̂2 = dÂ1 , F̂4 = dĈ3 − B̂2 ∧ dÂ1 , Ĥ3 = dB̂2 , (2.3)

and the topological terms read

Ltop = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 − (B̂2)

2 ∧ dĈ3 ∧ dÂ1 +
1

3
(B̂2)

3 ∧ dÂ1 ∧ dÂ1

]
. (2.4)

2This supergravity was first constructed in [23].
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The action above can be easily seen to be invariant under the Abelian gauge transforma-
tions

δÂ1 = dλ , δĈ3 = dΣ2,

δB̂2 = dΛ1 , δ̂C3 = Λ1 ∧ dÂ1 .
(2.5)

It turns out that in ten dimensions one can find a whole family of non-chiral N = 2
theories parameterized by a constant parameter m [24]. The action for this theory can
again be written as in (2.2) with the only modifications that a cosmological constant
term has to be added −1

2
m2 ∗ 1 and now the field strengths are given by

F̂2 = dÂ1 +mB̂2 , F̂4 = dĈ3 − B̂2 ∧ dÂ1 −
m

2
(B̂2)

2 , Ĥ3 = dB̂2 , (2.6)

while the topological terms read

Ltop = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 − (B̂2)

2 ∧ dĈ3 ∧ dÂ1 +
1

3
(B̂2)

3 ∧ dÂ1 ∧ dÂ1

−m
3

(B̂2)
3 ∧ dĈ3 +

m

4
(B̂2)

4 ∧ dÂ1 +
m2

20
(B̂2)

5
]
. (2.7)

In this case the gauge transformations (2.5) take the form

δÂ1 = dλ , δĈ3 = dΣ2 ,

δB̂2 = dΛ1 , δĈ3 = Λ1 ∧ dÂ1 , δÂ1 = −mΛ1 .
(2.8)

We should notice that the field A1 has a transformation similar to the one of a Goldstone
boson and thus can be gauged away; in this gauge the two-form field B2 effectively
becomes massive. As a last remark we notice that in the limit m → 0 the massive type
IIA action reduces to (2.2).

2.1.3 Type IIB theory

Let us now come to the type IIB theory. In this case there is one subtlety which one has to
take into account when writing an action, namely the fact that the four-form field Â4 has
self-dual field strength. If one would naively try to write down a kinetic term for this field
like F̂5∧∗F̂5 with F̂5 being the field strength of Â4 imposing the self-duality condition on
F̂5 namely F̂5 = ∗F̂5 the kinetic term above vanishes identically. The fact that a covariant
action can not be written in such cases was noticed long time ago [25], but nevertheless
the theory is perfectly well defined by the equations of motion the fields have to satisfy.
More recently a covariant action for the type IIB theory was constructed [26], but we
will content ourselves to write an action from which the self-duality does not follow, but
it rather has to be imposed by hand in order to obtain the correct equations of motion.
In the string frame this action has the form [21]

SIIB =

∫
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2dφ̂ ∧ ∗dφ̂− 1

4
Ĥ3 ∧ ∗Ĥ3

)
(2.9)

−1

2

(
dl ∧ ∗dl + F̂3 ∧ ∗F̂3 +

1

2
F̂5 ∧ ∗F̂5

)
− 1

2
Â4 ∧ Ĥ3 ∧ dĈ2 ,
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where the field strengths are defined as

Ĥ3 = dB̂2 , F̂3 = dĈ2 − ldB̂2 , F̂5 = dÂ4 −
1

2
Ĉ2 ∧ dB̂2 +

1

2
B̂2 ∧ dĈ2 . (2.10)

As in the case of type IIA theory the action above is invariant under the Abelian
gauge transformations

δA4 = dΣ3 ,

δB2 = dΛ1 , δA4 = −1

2
Λ1 ∧ dC2 ,

δC2 = dΛ′
1 , δA4 = −1

2
Λ′

1 ∧ dB2 .

(2.11)

Besides (2.11) type IIB supergravity features an SL(2,R) which rotates the two two-
forms (B̂2, Ĉ2) and the two scalars (φ̂, l) into one another. In order two make this
symmetry manifest one goes to the Einstein frame and introduces the complex scalar
τ = l + ie−φ and the complex two-form G3 = dC3 + τH3. With these redefinitions the
action reads [21,27]3

SE
IIB =

1

2

∫ (
−R ∗ 1− dτ ∧ ∗dτ̄

2(τ2)2
− 1

2

G3 ∧ ∗Ḡ3

τ2
− 1

2
F5 ∧ ∗F5

)
(2.12)

−1

8

∫
A4 ∧G3 ∧ Ḡ3

τ2
,

where τ2 denotes the imaginary part of the scalar τ . It is easy to see that in this form
the action is invariant under and the following transformations

τ → τ ′ =
aτ + b

cτ + d
, G3 → G′

3 =
G3

cτ + d
. (2.13)

where ad − bc = 1. Note that under the above transformations the fields C2 and B2

transform as (
C2

B2

)′

=

(
a −b
−c d

) (
C2

B2

)
. (2.14)

2.2 N = 2 supersymmetry in four dimensions

Anticipating that the theories which we obtain in four dimensions are N = 2 super-
symmetric we present in this section some basic notions about supersymmetry in four
dimensions.

3In fact one has to redefine all the RR fields in (2.9) by a factor of
√

2 i.e. ARR
p → 1/

√
2ARR

p in
order to obtain this action. However we work with the convention in (2.9) so that we obtain directly the
correct normalization in four dimensions.
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Minimal supersymmetry is denoted by N = 1 which is equivalent to saying that the
theory is invariant under the action of four real supercharges. This is so because in four
dimensions one can impose either the Weyl or the Majorana condition on spinors (but not
both) which effectively reduces the number of degrees of freedom in a spinor to four. As
in section 2.1.1 when we look for massless representations of the N = 1 supersymmetry
algebra only half of the supercharges are non-vanishing. These two supercharges can be
organized in ‘creation’ and ‘annihilation’ operators (i.e. raising and lowering the helicity).
Thus the N = 1 super-multiplet contains only two states whose spin differ by 1/2. The
physical interesting multiplets are listed in table 2.2.

Multiplet Bosons Fermions

chiral Φ ψ

vector Aµ λ

gravitino Aµ Ψµ

graviton gµν Ψµ,

Table 2.2: N = 1 supermultiplets in four dimensions. Φ denotes a complex scalar,
Aµ, µ = 0, . . . , 3 is a vector, gµν is the metric, ψ, λ are spin 1/2 fields and Ψµ denotes
the gravitino.

As in section 2.1.1 theN = 2 multiplets are obtained by combining variousN = 1 mul-
tiplets. Putting together two chiral multiplets one obtains the so called hyper-multiplet.
It contains two spinors and four real scalars and they form the matter part in N = 2
theories. A vector and a chiral multiplet give rise to an N = 2 vector multiplet4 which
consists of a vector, two gaugini (spin 1/2 fields) and one complex scalar. Finally the
graviton and gravitino multiplet from table 2.2 give rise to the N = 2 gravity multi-
plet which consists of the graviton, two gravitini and a vector field known also as the
graviphoton. These possibilities are summarized in table 2.3.

Multiplet Bosons Fermions

hyper-multiplet 4× ϕ, 2× ψ

vector Aµ,Φ 2× λ

graviton gµν , A
0
µ 2×Ψµ,

Table 2.3: N = 2 supermultiplets in four dimensions. Note that we have used the symbol
ϕ to denote the real scalars in contrast with Φ which denotes complex ones.

It is worth mentioning that in four dimensions these super-multiplets have (Poincaré)
dual descriptions which will in many cases appear directly from the compactifications of
higher dimensional theories. As a real scalar in four dimensions has a dual description in

4This is also known as the chiral N = 2 multiplet.
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terms of an antisymmetric tensor field a hyper-multiplet can appear as a tensor multiplet
whose bosonic degrees of freedom are given by (Bµν , 3 × ϕ). Furthermore one can also
encounter double tensor multiplets (Bµν , Cµν , 2 × ϕ). Less usual are the vector-tensor
multiplets (Aµ, Bµν , ϕ) where Bµν is the dual description of one of the real scalars in the
vector multiplet from table 2.3. In most cases we will dualize these additional multiplets
to the ones in table 2.3 and we will refer to these multiplets as the standard spectrum
of N = 2 theories. However we will encounter some cases where this dualization is not
possible as some of the fields become massive and the dual description is less easy to
formulate (for more details about dualizations see appendix D.2).

2.3 Calabi–Yau compactifications

Having introduced the main features of the type II theories in ten dimensions we can
turn to study their compactification to four dimensions. As explained in the introduction
Calabi–Yau threefolds are the most natural internal spaces to consider as they preserve
minimal amount of supersymmetry. After a general introduction where we present in
more detail the relation between the the compactification manifold and the supersym-
metries which survive in four dimensions we highlight the main ideas encountered in
deriving the low energy effective action of type II supergravities compactified on Calabi–
Yau three-folds.

2.3.1 Calabi–Yau threefolds and supersymmetry

Calabi–Yau threefolds have originally appeared when trying to obtain N = 1 vacua of
the heterotic string [9]. Such compactification were thought to play an important role in
string phenomenology as the four-dimensional theories generically have minimal amount
of supersymmetry, chiral fermions and non-Abelian gauge groups which are large enough
to contain the standard model gauge group or even GUT groups. Our main interest
though will be the study of the low energy effective theories (N = 2 supergravities)
obtained by compactifying type II theories on Calabi–Yau manifolds and in particular
the mirror symmetry which relates them in four dimensions. Such compactifications were
first considered in [28, 29] and the low energy effective actions in four dimensions were
first derived in [30–32].

Before we start the derivation of the effective actions in four dimensions let us describe
how supersymmetry is directly related to the choice for the internal manifold. This short
review is going to be essential for understanding the generalizations we consider in chapter
5.

We assume that the ten dimensional space splits as

M = R1,3 ×K6 , (2.15)

for some yet unknown internal six-dimensional manifold K6. First of all in order to have
a supersymmetric action in four dimensions one needs to reduce the ten dimensional
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supercharge (or equivalently the ten dimensional gravitino) to a four dimensional one. For
this the minimal requirement would be that the internal manifold admits globally-defined
nowhere-vanishing spinors which we denote by ηI , I = 1, . . . , N . The ten dimensional
gravitino Ψ̂M can be expanded in the internal spinors and one defines the four dimensional
gravitini ΨI

µ as

Ψ̂µ =
N∑

I=1

ΨI
µ ⊗ ηI . (2.16)

From this schematic expansion one sees that the number of four dimensional gravitini (i.e.
the number of supercharges) in four dimensions depends on the number of independent
spinors on the internal manifold. In particular, in order to preserve the minimal amount
of supersymmetry one needs one single spinor on the internal manifold which is globally
defined and nowhere vanishing. This is equivalent to saying (for a six dimensional mani-
fold) that the structure group5 of the manifold has been reduced to SU (3) and the spinor
which is globally defined is a singlet under this SU (3). (for a more detailed discussion see
appendix C) For generic manifolds such spinors do not exist and thus compactifications
on such spaces break all supersymmetries while special manifolds like the torus have the
maximum number of independent spinors and so they preserve all supersymmetries.

A second issue related to supersymmetry is whether the ground state which we choose
is a supersymmetric one. In case we ask for the four-dimensional theory to have a
Minkowski vacuum (like in (2.15)) all the fields which transform non-trivially under the
Lorentz group have to vanish in the background. In particular all the fermions vanish and
in order for the vacuum to be supersymmetric we also need that the same happens with
their supersymmetry variations. Consider the ten dimensional supersymmetry variations
of the gravitinos which can schematically be written as (for the exact supersymmetry
variations see for example [22,23,33] )

δψM = ∇Mε+
∑

p

(Γ · F̂p)Mε+ . . . ; M = 0, . . . , 9 , (2.17)

where the sum goes over the p-form field strengths in the theory, the dots indicate
fermionic terms, while the term (Γ·Fp)M denotes contractions of the p-form field strengths
with gamma matrices of the form

(Γ · F̂p)M ∼ ΓMN1...Np(F̂p)
N1...Np + ΓN1...Np−1(F̂p)

N1...Np−1
M . (2.18)

Additionally there can be further factors of the dilaton, but as in this analysis we always
keep it constant on the internal space these factors are not relevant for the future dis-
cussion. The simplest ground state consistent with four-dimensional Lorentz invariance
is one where all the fields (except for the metric) are zero. In this background the field
strengths F̂p also vanish and the condition for supersymmetry δψM = 0 becomes

∇Mε = 0 . (2.19)

5Given a manifold and a metric one can introduce orthonormal frames at every point. The transitions
between different such frames define the structure group which in general is a subgroup of SO(n) where
n is the dimension of the manifold. For a more precise definition see appenxid C.
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Note that this is a ten dimensional equation and in order to obtain some constraints for
the internal manifold one has to decompose it into its space-time and internal parts. The
standard thing one does is to write the spinor ε as a direct product

ε = θ ⊗ η , (2.20)

were θ is a space-time spinor while η is an internal one. Since both θ and ε are physical
spinors they have to be anticommuting and this implies that η has to be a commuting
spinor. With this decomposition the supersymmetry preserving condition reads

∂µθ = 0 , µ =0, . . . , 3 ,

∇mη = 0 , m =1, . . . , 6 ,
(2.21)

where ∇m denotes the covariant derivative on K6 with respect to the Levi-Civita con-
nection. The first equation does not constrain the space-time any further as Minkowski
space admits constant spinors. The second relation on the other hand is highly non-
trivial and imposes very restrictive conditions on the internal manifold. Note that in
particular this relation means that η is globally defined6 which implies that such a mani-
fold automatically preserves some supersymmetry of the effective action. Manifolds with
a covariantly constant spinor are known as Calabi–Yau manifolds and we will consider
them in this section as compactification manifolds. Using (2.21) one can show [22] that
such manifolds are complex Kähler and have SU (3) holonomy. These properties together
are in fact the usual definition of Calabi–Yau manifolds which one can find in the litera-
ture [34]. Equivalently, Calabi–Yau manifolds can be characterized by the existence of a
Kähler form J and a unique holomorphic (3, 0) form Ω which are both covariantly con-
stant. It was proven by Yau that Calabi–Yau manifolds admit a unique Ricci flat metric.
This means that the background (2.15) with all other fields vanishing is a solution to the
ten-dimensional Einstein equations. Moreover it is well known that backgrounds of the
type (2.15) are consistent geometries in which strings can move [34].

Before we move on to consider compactifications of type II theories on Calabi–Yau
manifolds, let us summarize the results of this section. In order that the four dimensional
effective action is supersymmetric we need that the internal manifold admits a globally-
defined nowhere-vanishing spinor or in other words its structure group reduces to SU (3)
or a subgroup thereof. Independently, if one asks for a supersymmetric ground state
this spinor has to satisfy further constraints like for example (2.21) which came from the
vanishing of the supersymmetry variations for the fermions in a certain background. For
the analysis of this work this last requirement will not play a special role and we will see
in the next chapters cases where the supersymmetry variations of the fermions do not
vanish either because of of the presence of non-trivial fields in the background (fluxes)
or because the relations (2.21) are no longer satisfied.

6One can define the spinor η by parallel transport as (2.21) guarantees that this is path independent.
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2.3.2 Calabi–Yau manifolds and their moduli space

Even though no Calabi–Yau metric was explicitly constructed up to now and thus in
some sense it is hard to picture such a manifold, their topology is quite well understood.
For obtaining the low energy physics this is enough as the harmonic forms encode the
information about the massless spectrum in four dimensions. Denoting by h(p,q) the
Hodge numbers i.e. the dimension of the corresponding (p, q) cohomology group Hp,q, it
is easy to see that the only non-trivial ones are given by [22]

h(0,0) = h(3,0) = h(0,3) = h(3,3) = 1 ,

h(1,1) = h(2,2) , h(2,1) = h(2,1) ,
(2.22)

and thus the topology of such manifolds is characterized by two independent natural
numbers7 h(1,1) and h(2,1). Consequently one can write the Hodge diamond in the following
way

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

. (2.23)

The fact that this diamond is symmetric with respect to to a vertical axis which passes
through the middle is due to complex conjugation while the symmetry with respect to
the horizontal axis is due to Poincaré duality. As we have seen in the introduction there
is one further symmetry with respect to a diagonal axis which exchanges h(1,1) and h(2,1)

between the mirror manifolds.

In order to characterize the different cohomology groups introduced above we denote
by ωi, i = 1, . . . , h(1,1) a basis for the (1, 1) harmonic forms and by ω̃i their duals which
form a basis for the harmonic (2, 2) forms. We choose these forms to be normalized as∫

Y3

ωi ∧ ω̃j = δj
i . (2.24)

Similarly we can introduce a real basis for H3(Y ) (αA, β
A), A = (0, a) = 0, . . . , h(2,1)

which is normalized as∫
Y3

αA ∧ βB = δB
A = −

∫
Y3

βB ∧ αA , A,B = 0, . . . , h(2,1) ,∫
Y3

αA ∧ αB =

∫
Y3

βA ∧ βB = 0 . (2.25)

7For Calabi–Yau manifolds h(1,1) has to be at least one because they are Kähler. h(2,1) on the other
hand can also be zero, but in this case mirror symmetry is less obvious so we only consider cases for
which h(2,1) is also non-vanishing.
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Let us now see what the notion of moduli space means from a physical point of view.
Compactifying a theory on a Calabi–Yau manifold Y implies that the ten dimensional
space splits into a direct product M10 = R3,1⊗Y where R3,1 denotes the four dimensional
Minkowski space. Formally this means to choose a background metric of the form

ĜMN =

(
ηµν 0
0 g0 CY

mn

)
, (2.26)

where ηµν = diag(−1, 1, 1, 1) and g0 CY
mn represents the Calabi–Yau metric. Due to its

Ricci flatness this configuration automatically solves the Einstein equations when all
other fields vanish. In order to identify the states in the effective four dimensional theory
one have to consider variations of the ten dimensional metric about the background
(2.26). In particular, the four dimensional graviton appears as fluctuations of the metric
in the four space-time directions δGµν while the mixed components δGµN generally give
rise to massive states as no harmonic one forms are present on a Calabi–Yau space. What
is going to be interesting for us in the following are the internal fluctuations of the metric.
In string theory (or in supergravity) there is no dynamical way to choose a particular
manifold for performing the compactification. This means that for the ten dimensional
theory all Calabi–Yau manifolds look the same and going from a Calabi–Yau manifold
to another one which is infinitesimally close costs no energy. Thus all the fields which
appear from the deformations of the internal Calabi–Yau manifold are flat directions of
the potential and parameterize the vacuum degeneracy. Let us have a closer look and
see how these deformations can be interpreted as fields in four dimensions.

The deformed metric should still satisfy the vacuum Einstein equation and thus we
are lead to consider fluctuations δgmn which satisfy

Rmn(g + δg) = 0 . (2.27)

Expanding to the first order in δg one obtains the so called Lichnerowicz equation

∇p∇pδgmn + 2Rmpnqδg
pq = 0 , (2.28)

where δgpq = gmpgnqδgmn. As the Riemann tensor of Kähler manifolds has a very simple
index structure (in particular only Rαβ̄γδ̄ and combinations obtained using its symmetry
properties are non-vanishing) one can immediately see that the the equations for the
(2, 0) metric variations δgαβ and for the (1, 1) ones δgαβ̄ decouple. It can be checked that
the solutions to the above equations can be written as

δgαβ = za Ωαγδ(χa)
γδ
β ,

δgαβ̄ = vi (ωi)αβ̄ , (2.29)

where Ω is the holomorphic (3, 0) form, χ are (1, 2) harmonic forms and ωi are (1, 1)
harmonic forms introduced before. From the Calabi–Yau point of view, za and vi are
constants parameterizing the above expansions, but from a four dimensional point of
view they appear as scalar fields and they are precisely the moduli we were mentioning
before. Their dynamics is described in four dimensions by nonlinear sigma models which
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have as target space the corresponding moduli space. One can check this by computing
explicitly the ten dimensional Ricci scalar. However we do not perform this computation
here, but just rely on the results in the literature [30,35,36].

The metric deformations in (2.29) have also a geometrical interpretation. Changing
the metric by a (2, 0) piece renders the metric non-hermitian. This can obviously not be
undone by a holomorphic coordinate transformation so the only solution to obtain again
a hermitian metric is to change the complex structure. Thus the (2, 0) deformations of
the metric are responsible for the so called complex structure deformations. On the other
hand, changing the metric by a (1, 1) piece does not require any change in the complex
structure as the new metric is still hermitian. However what changes in this case is the
Kähler form and thus δgαβ̄ are termed Kähler class deformations.

In string theory together with the metric, in the NS-NS sector one finds an antisym-
metric tensor field BMN whose expansion in the harmonic (1, 1) forms produces a set of
h(1,1) scalar fields which combine together with the Kähler class deformations to form
the complex scalars ti = bi + ivi. It is known [36] that the scalar manifold spanned by
ti is a special Kähler manifold and the same holds true for the manifold spanned by
za. Knowing that one of the two sets of scalars enter in the vector multiplets in one of
the type II theories compactified to four dimensions8 this is consistent with the result
obtained for N = 2 supergravity theories where the scalars in the vector multiplets span
indeed a special Kähler manifold [37].

Before moving on let us make the one more remark. Due to the fact that the equations
for the Kähler class and complex structure deformations decouple, the moduli space of
Calabi–Yau manifolds can be written as

M = M1,1 ⊗M2,1 . (2.30)

We can in this way see that the geometrical interpretation of mirror symmetry is that it
exchanges the (complexified) Kähler deformations with the complex structure ones.

2.3.3 Type IIA on CY3

Let us present the first example of a Calabi–Yau compactification by choosing as starting
point the ten dimensional type IIA supergravity briefly discussed in section 2.1.2. The
computation we present here was first discussed in [30]. As we showed before Calabi–Yau
manifolds break three quarters of the supersymmetry which is present in ten dimensions
and so we expect to obtain after compactifying a type II theory an N = 2 supergravity
in four dimensions. Thus we will write the final form of the action in the standard N = 2
way as presented in appendix B.

The first step in performing the KK reduction is to specify the background field
configuration which has to be a solution to the ten dimensional equations of motion. For
the metric we take the Ansatz (2.26) while for the matter fields we make the simplifying

8ti are associated with the scalars in the vector multiplets in the case of type IIA theory, while za

enter the vector multiplets in the case of type IIB theory
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assumption that they are constant in the ten-dimensional background.9 This implies that
all the field strengths vanish and thus due to the fact that the Calabi–Yau metric has
zero Ricci tensor, the choice (2.26) automatically satisfies the ten dimensional Einstein
equations. Before turning to the KK reduction let us emphasize once more that the
configuration we have just discussed is a supersymmetric one. This means that the four
dimensional theory admits a supersymmetric Minkowski vacuum. This will however not
be the case in the situations we will treat in the next chapters.

The reduction proceeds as explained in some detail in appendix D.1 by taking fluctua-
tions around the background and deriving the dynamics for these fluctuations. As we are
only interested in the low energy approximation we truncate out the fields which acquire
a mass in the KK reduction due to the dependence on the internal manifold. This is
usually done by keeping in the expansion of the ten dimensional fields only the massless
modes. They turn out to correspond to harmonic forms on the internal manifold [22].
Thus the massless fields in four dimensions are completely determined by the topology
of the compactification manifold.

It is instructive to have a closer look at the four dimensional massless spectrum
obtained by compactifying type IIA theory on a Calabi–Yau three-fold and see how it
arranges itself into N = 2 representations. We will use the following analysis in the
more complicated cases which are discussed in the next chapters. Expanding the ten
dimensional fields Â1, B̂2 and Ĉ3 in the Calabi–Yau harmonic forms defined above we
obtain

Â1 = A0 ,

B̂2 = B2 + biωi , (2.31)

Ĉ3 = C3 + Ai ∧ ωi + ξAαA − ξ̃Aβ
A ,

where C3 is a three-form, B2 a two-form, (A0, Ai) are one-forms and bi, ξA, ξ̃A are scalar
fields in D = 4. Furthermore we have to take into account the other massless modes
which appear due to the fluctuations of the metric on the internal manifold, namely the
scalars vi and za (2.29). The Kähler class moduli vi (2.29) combine with the scalars bi

defined in (2.31) into complex scalar fields ti = bi + ivi which together with the one-
forms Ai from (2.31) form the bosonic components of h(1,1) vector multiplets (Ai, ti).
The complex structure deformations za and the scalars ξa, ξ̃a of (2.31) are members of
h(2,1) hyper-multiplets while ξ0, ξ̃0 together with the dilaton φ and B2 form the tensor
multiplet. A0 in (2.31) is the graviphoton which together with the four-dimensional
metric gµν describes the bosonic components of the gravitational multiplet.

The next step in performing the compactification is the derivation of the low energy

9Strictly speaking this is not required to be the case for the internal directions and the background
can in principle depend on the internal coordinates. The possibility of having non-trivial fields in the
background was first considered in [9, 38]. However for a metric of the form (2.26) the ten dimensional
equations of motion impose that these fields are in fact constants. It was shown in [29, 39, 40] that in
order to incorporate such non-trivial fields one has to introduce a warp factor in the Ansatz (2.26). In
the next chapter we will discuss some generalization of this setup in that we allow for some field strengths
to have non-vanishing values in the background.
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dynamics of the fields obtained in the expansion (2.31). This can be done by replacing
the expansion (2.31) in the ten dimensional equations of motion for type IIA theory
obtained from the action (2.2) and derive in this way the equations of motion for the
four dimensional fields. This is however cumbersome as the equations of motion have
a quite complicated form. A more transparent way would be to replace the expansion
(2.31) directly in the action and perform the integration over the internal manifold. The
drawback is that in principle this method is not guaranteed to work every time and one
should really check that the action obtained in this way correctly reproduce the four
dimension equations of motion. However for the cases we study here this second method
always work and we will never show explicitly that the result gives the right equations
of motion.

First we compute the field strengths (2.3) assuming the Ansatz (2.31). Using the fact
that the harmonic forms are closed it is straightforward to obtain the following expansions

F̂2 = dA0 ,

Ĥ3 = dB2 + dbiωi , (2.32)

F̂4 = dC3 −B2 ∧ dA0 + (dAi − bidA0) ∧ ωi + dξAαA − dξ̃Aβ
A .

Now one plugs (2.31) and (2.32) into the action (2.2) and performs the integrals over the
Calabi–Yau space. The different terms in the action (2.2) become

−1

4

∫
Y3

Ĥ3 ∧ ∗Ĥ3 = −K
4

dB2 ∧ ∗dB2 −Kgijdb
i ∧ ∗dbj ,

−1

2

∫
Y3

F̂2 ∧ ∗F̂2 = −K
2

dA0 ∧ ∗dA0 , (2.33)

−1

2

∫
Y3

F̂4 ∧ ∗F̂4 = −K
2

(dC3 − dA0 ∧B2) ∧ ∗(dC3 − dA0 ∧B2)

−2Kgij(dA
i − dA0bi) ∧ ∗(dAj − dA0bj)

+
1

2

(
ImM−1

)AB
[
dξ̃A −MACdξC

]
∧ ∗

[
dξ̃B − M̄BDdξD

]
,

∫
Y3

Ltop = −1

2

[
B2 ∧ d(ξAdξ̃A − ξ̃AdξA) + bidAj ∧ dAkKijk

−bibjdAk ∧ dA0Kijk +
1

3
bibjbkdA0 ∧ dA0Kijk

]
,

where K denotes the Calabi–Yau volume, gij is the metric on the space of Kähler de-
formations and Kijk denotes the triple intersection number on a Calabi–Yau manifold
Y3

gij =
1

4K

∫
Y3

ωi ∧ ∗ωj , Kijk =

∫
Y3

ωi ∧ ωj ∧ ωk . (2.34)
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Moreover the matrix M is defined by the following relations∫
Y3

αA ∧ ∗αB = −
[
(ImM) + (ReM)(ImM)−1(ReM)

]
AB

,∫
Y3

βA ∧ ∗βB = −
[
(ImM)−1

]AB
, (2.35)∫

Y3

αA ∧ ∗βB = −
[
(ReM)(ImM)−1

]
A

B .

Furthermore, as explained in section 2.3.2 the gravitational sector produces the kinetic
terms for the Kähler and complex structure moduli which have the form10∫

Y3

−R(10) ∗ 1 ∼ −R(4) ∗ 1− gijdv
i ∧ ∗dvj − gabdz

a ∧ ∗dz̄b , (2.36)

where gij is given in (2.34) while gab̄ is the metric on the complex structure moduli space
and is given in (B.38).

Comparing with the standard N = 2 supergravity spectrum in four dimensions from
table 2.3 we see that at this stage we do not have exactly the same fields as a three and
a two-form field are present. The three-form is not dynamic as it carries no degrees of
freedom in four dimensions. However, in general, its dualization produces a contribution
to the cosmological constant. As shown in [14] this constant can be viewed as a specific
RR-flux and we will take it into account properly in section 3.3. Here we choose this
constant to be zero and hence we discard the contribution of C3.

11 A two form on the
other hand has a dual description in four dimensions in terms of a scalar and thus the
only thing we need to do in order to recover the standard spectrum of N = 2 supergravity
in 4 dimensions is to dualize it to an axion a. This dualization can be performed in the
standard way as described in appendix D.2.1 and the result can be written as

La = −e
2φ

4

[
da− (ξ̃AdξA − ξAdξ̃A)

]
∧ ∗

[
da− (ξ̃AdξA − ξAdξ̃A)

]
. (2.37)

In general supergravity actions are written in the Einstein frame and for this one
needs to rescale the metric with a factor e2φ in order to absorb the extra e−2φ which
appears in front of the Einstein–Hilbert term. Note that φ denotes the four dimensional
dilaton which is defined from the ten dimensional dilaton φ̂ as e−2φ = Ke−2φ̂.

Finally we have to arrange the gauge field sector. For this note that in N = 2
supergravity in addition to the gauge fields coming from the vector-multiplets there is
the graviphoton. In a component action it makes sense to treat all the spin one fields

10It is well known that this issue is more subtle [30] due to the Weyl rescaling which one should
perform in four dimensions in order to incorporate the overall volume factor. However we will ignore
this problem and we just use the fact that in the Einstein frame only the kinetic terms (2.36) appear.

11In fact what we are going to set to zero is the full gauge invariant combination C3 − dA0 ∧ B2. To
see this one should perform the dualization of C3 in a proper way as explained in the appendix D.2.2
and at the end set the constant which is dual to C3 to zero.
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on the same footing. Thus we introduce the collective notation AI = (A0, Ai) where
I = (0, i) = 0, . . . , h(1,1) where the index 0 denotes the graviphoton. With this additional
piece of notation the final form of the low energy effective action becomes

SIIA =

∫ [
− 1

2
R ∗ 1− gijdt

i ∧ ∗dt̄j − huvdq
u ∧ ∗dqv

+
1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J
]
, (2.38)

where the gauge coupling matrix N can be directly read off from (2.33)

ReN00 = −1

3
Kijkb

ibjbk , ImN00 = −K +

(
Kij −

1

4

KiKj

K

)
bibj ,

ReNi0 =
1

2
Kijkb

jbk , ImNi0 = −
(
Kij −

1

4

KiKj

K

)
bj , (2.39)

ReNij = −Kijkb
k , ImNij =

(
Kij −

1

4

KiKj

K

)
,

and huv is the σ-model metric for the scalars in the hyper-multiplets which can be written
in the standard quaternionic form [41]

huvdq
u ∧ ∗dqv = dφ ∧ ∗dφ+ gabdz

a ∧ ∗dz̄b (2.40)

+
e4φ

4

[
da− (ξ̃AdξA − ξAdξ̃A)

]
∧ ∗

[
da− (ξ̃AdξA − ξAdξ̃A)

]
−e

2φ

2

(
ImM−1

)AB
[
dξ̃A −MACdξC

]
∧ ∗

[
dξ̃B − M̄BDdξD

]
.

Comparing with the results presented in appendix B one observes that the effective
action derived in (2.38) is precisely of the form of anN = 2 supergravity and the couplings
(2.39) coincide with the ones derived on the supergravity side (B.27).

2.3.4 Type IIB on CY3

Let us now discuss the second example of a KK reduction, namely the compactification
of type IIB supergravity on a Calabi–Yau threefold which was previously discussed in
[31, 32]. The calculations in this section are in many respects similar to the ones in the
previous one so we will keep the discussion short highlighting only the major differences
from the type IIA case. What we focus on is the relation to type IIA compactifications
via mirror symmetry and so we consider that the compactification manifold in type IIB
case is the mirror manifold of the one we chose in the previous section. However, in
order not to overload the notation we use the same symbols to denote the Calabi–Yau
quantities on both sides.
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We start from the ten-dimensional type IIB theory presented in section 2.1.312 and
we choose a background field configuration like in the previous section. More precisely
except for the metric for which we assume the direct product structure (2.26) all the
other fields are chosen to vanish in the background. As before we are interested in the
massless spectrum which one obtains by expanding the ten dimensional matter fields
B̂2, Ĉ2 and Â4 in the Calabi–Yau harmonic forms

B̂2 = B2 + bi ωi , Ĉ2 = C2 + ci ωi ,

Â4 = Di
2 ∧ ωi + V AαA − UBβ

B + ρiω̃
i ,

(2.41)

where ωi, ω̃
i and (αA, β

A) were introduced in (2.24) and (2.25). Let us see how these fields
combine into N = 2 supermultiplets. Due to the self-duality of F̂5 one has to be more
careful. In particular, this condition tells us that only half of the degrees of freedom
encoded in Â4 are physical. From the point of view of the four-dimensional theory
the self-duality condition implies, as we will see in a while, that the four-dimensional
fields obtained from the expansion of the four-form Â4 (2.41) come in Poincaré dual
pairs. More specific the two-forms Di

2 are the duals of the scalars ρi while the vector
fields (V A, UA) are related by electric-magnetic duality. Thus it is completely equivalent
to keep either of the dual fields, but for definiteness and in order to be closer to the
N = 2 spectrum from table 2.3 we will choose as physical fields in four dimensions the
scalars ρi, i = 1, . . . , h(1,1) and the vector fields V A, A = 0, . . . , h(2,1). Taking also into
account the Calabi–Yau moduli (2.29) one sees that the N = 2 spectrum consists of
a gravitational multiplet with bosonic components (gµν , V

0), a double-tensor multiplet
(B2, C2, φ, l), h

(1,1) hyper-multiplets (ρi, vi, bi, ci) and h(2,1) vector multiplets (V a, za).13

Comparing with the type IIA spectrum in four dimensions we see that the number of
hyper- and vector multiplets are exchanged and now the complex structure deformations
za are the bosonic partners of the vector fields. As we will see at the end of this chapter
this is precisely how mirror symmetry connects the two theories.

Let us now proceed with the KK reduction of type IIB action. The difference from
type IIA theory comes because of the self-duality of F̂5. As we mentioned above this
condition can not be obtained from the action (2.9), but rather has to be imposed as
a separate constraint in order to obtain the correct equations of motion. Thus we have
to make sure that the field strength F̂5 obtained from (2.10) by substituting the field
expansion (2.41) satisfies

F̂5 = ∗F̂5 . (2.42)

Upon using the expressions for the Hodge duals of the harmonic forms on a Calabi–Yau
manifold (B.29), (B.30), (B.40) and (B.42) the above condition splits in the following

12In fact, in order to have shorter formulae we redefine the field Â4 such that its field strength becomes
F̂5 = dÂ4 − dB̂2 ∧ Ĉ2. Note that with this the form of the action including the topological term are not
changed.

13Note that keeping the two-forms Di instead of the scalars ρi would mean that in the final spectrum
we would have h(1,1) tensor multiplets replacing the h(1,1) hyper-multiplets.



28 Chapter 2. Calabi–Yau compactifications of type II theories

two constraints for the four-dimensional fields

GA = ImMAB ∗ FB + ReMABF
B ,

dρi −Kijkdb
jck = 4Kgij ∗ (dDj − dbjC2 − dcjB2) , (2.43)

where we have introduced the notation

FA = dV A , GA = dUA . (2.44)

We see now what we explained in words before that the fields V A and UA are not inde-
pendent and the same is true with the fields Di and ρi. However, for deriving the four
dimensional effective action it will be easier to treat them as independent fields and then
impose the conditions (2.43) at a later stage in the calculation by adding appropriate
Lagrange multiplier terms. Thus inserting (2.41) into (2.9), performing the integrals
over the Calabi–Yau space using (2.24), (2.25), (2.34), (2.35) and keeping only the terms
which contain the fields FA, GA, D

i or ρi we obtain

S(FA, GA, D
i, ρi) =

1

4
(ImM)−1AB(GA − FCMAC) ∧ ( ∗GB − ∗FDM̄BD)

−Kgij(dD
i − dbi ∧ C2 − cidB2) ∧ ∗(dDj − dbj ∧ C2 − cjdB2)

− gij

16K
(dρi −Kikldb

kcl) ∧ ∗(dρj −Kjmndbmcn) (2.45)

−1

2
KijkdD

i ∧ dbjck − 1

2
dρi ∧ (cidB2 + dbi ∧ C2) .

As explained above, the correct action for these fields can be only obtained after imposing
the self-duality conditions (2.43). The aim is to obtain these constraints from a variational
principle and then integrate out the redundant fields from their equations of motion. To
do this we add the following total derivatives to the action [42]

δS(FA, GA, D
i, ρi) =

1

2
FA ∧GA +

1

2
dDi ∧ dρi . (2.46)

One can easily see that the self-duality conditions (2.43) are now realized as equations
of motion for the fields GA and dDi. Replacing GA and dDi from (2.43) we obtain the
following action for FA = dV A and dρi

S(V A, ρi) =
1

2
ImMABF

A ∧ ∗FB +
1

2
ReMABF

A ∧ FB

− g
ij

2K
(dρi −

1

2
Kikldb

kcl) ∧ ∗(dρj −
1

2
Kjmndbmcn) (2.47)

−2dρi ∧ (dbi ∧ C2 + cidB2)−
1

2
dB2 ∧ (Kijkc

icjdbk) ,

where we have further performed the rescaling ρi → 2ρi.
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For the rest of the action (2.9) which does not involve the field Â4 the derivation
of the four dimensional action proceeds as in the type IIA case by just replacing the
expansion of the ten dimensional fields (2.41) into the ten dimensional action (2.9). One
thus obtains

S =

∫
e−2φ

(
− 1

2
R ∗ 1 + 2dφ ∧ ∗dφ− 1

4
H3 ∧ ∗H3 − gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j

)
−1

2
K dl ∧ ∗dl − 2Kgij(dc

i − ldbi) ∧ ∗(dcj − ldbj) (2.48)

−1

2
(dC2 − ldB2) ∧ ∗(dC2 − ldB2) + S(V A, ρi) .

Again in order to recover the usual N = 2 spectrum which we have described in table
2.3 we have to dualize the two two-forms C2 and B2 to scalars which we denote by h1

and h2 respectively. Following appendix D.2.1 one obtains for the action (2.48)

S =

∫
e−2φ

(
− 1

2
R∗1 + 2dφ ∧ ∗dφ− gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j

)
−1

2
K dl ∧ ∗dl − 2Kgij(dc

i − ldbi) ∧ ∗(dcj − ldbj)

−1

2
(dh1 − 2bidρi) ∧ ∗(dh1 − 2bidρi) (2.49)

−
[
dh2 + 2l(dh1 − 2bidρi) + 4ci(dρi −

1

4
Kijkc

jdbk)

]2

+
1

2
ImMABF

A ∧ ∗FB +
1

2
ReMABF

A ∧ FB ,

The action above is the effective action in four dimensions which appears by compact-
ifying type IIB supergravity on Calabi–Yau manifolds. Comparing it with the N = 2
standard supergravity action (B.20) one observes that it is not obvious that they coin-
cide. To bring it in this form one has to further redefine the fields in the hyper-multiplets
in order to put them in the quaternionic form given in [41]

ξ0 = l , ξi = lbi − ci ,

ξ̃i = −2ρi −
l

2
Kijkb

jbk +Kijkb
jck , (2.50)

ξ̃0 = h1 +
l

6
Kijkb

ibjbk − 1

2
Kijkb

ibjck ,

a = h2 + lh1 + 2ρi(c
i − lbi) .

and rescale the metric by a factor e2φ in order to go to the Einstein frame. With this the
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final form of the type IIB effective action in four dimensions reads

SIIB =

∫ [
− 1

2
R∗1− gabdz

a ∧ ∗dz̄b − huvdq
u ∧ ∗dqv

+
1

2
ImMIJF

I ∧ ∗F J +
1

2
ReMIJF

I ∧ F J
]
, (2.51)

where the metric huv is given by

huvdq
u ∧ ∗dqv = dφ ∧ ∗dφ+ gabdz

a ∧ ∗dz̄b (2.52)

+
e4φ

4

[
da− (ξ̃Adξ

A − ξAdξ̃A)
]
∧ ∗

[
da− (ξ̃Adξ

A − ξAdξ̃A)
]

−e
2φ

2

(
ImN−1

)AB
[
dξ̃A −NACdξ

C
]
∧ ∗

[
dξ̃B − N̄BDdξ

D
]
.

with the matrix N defined in (2.39).

One can see now that the redefinition (2.50) had two effects. First the effective
action of type IIB supergravity compactified on a Calabi–Yau three-fold (2.51) has the
standard N = 2 form (B.20). Secondly from the form (2.51) the relation to type IIA
compactification (2.38) is straightforward via the following identifications

za ↔ ti

N ↔ M
gab ↔ gij

 −−−→ hA
uv ↔ hB

uv . (2.53)

Thus we can identify equations (2.50) and (2.53) with the mirror map14 which exchanges
the type IIA compactification with the IIB one.

2.4 Discussion

Let us make a few comments on the results obtained in the last sections. The choice
of a Calabi–Yau space as a compactification manifold was dictated on phenomenological
grounds by requiring that the resulting four dimensional theory does not preserve all the
ten dimensional supersymmetries, but only some of them. However the theories derived in
(2.38) and (2.51) fail to reproduce some minimal features which are necessary for making
contact with the standard model. For example both theories (2.38) and (2.51) have
N = 2 supersymmetry which does not allow four dimensional chiral fermions. Moreover,
one notices that the gauge fields are all Abelian and thus again is inconsistent with the
observations that the standard model is based on a non-Abelian gauge group. Finally

14Note that one has to be careful with the basis in which the mirror map is considered. In order to
identify the complex structure deformations with the Kähler ones like in (2.53) one has to make sure
that these are the flat coordinates on the corresponding moduli spaces. However we do not enter such
details and assume that the the scalar fields zA and ti obtained from the reduction of the Ricci scalar
are the correct coordinates.
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the actions (2.38) and (2.51) feature h(1,1) + h(2,1) scalar fields which can be as large
as hundreds. These scalar fields are all flat directions of the potential and thus their
vacuum expectation values parameterize a huge vacuum degeneracy. Furthermore, the
fact that there is no potential associated to these fields means that they are completely
massless and thus again inconsistent with the present observation as no scalar particles
were observed until the present energies.

Consequently in order to obtain more realistic models one would at least need to
obtain a four dimensional potential for the scalar fields which could fix their vacuum
expectation values, give them masses and break spontaneously supersymmetry.15

In the next section we are going to present a generalization of the setup described in
this section in that some fields will be given a background value which will lead to the
appearance of a scalar potential for some of the moduli.

15We have already argued that non-Abelian gauge groups arise when one introduces D-branes in the
theory. Moreover dualities between different string theories have taught us that singularities of the
internal manifold can also generate non-Abelian gauge groups [43]. However in the following we will not
be concerned with these cases and we restrict ourselves to Abelian vector fields.



Chapter 3

Type IIA theory with fluxes

In this chapter we study a particular way of obtaining potentials for the moduli which
appear in KK compactifications by turning on fluxes for various field strengths. This
idea has first appeared in [44] for the case of type IIA compactifications on Calabi–Yau
three-folds, in [45] for M-theory on Calabi–Yau four-folds and in [46] for type IIB again
on Calabi–Yau three-folds. Several aspects of such compactifications including moduli
stabilization, effective superpotentials or dualities have been discussed recently [14–16,
42, 47–76]. In this first chapter which is devoted to such generalized compactifications
we discuss type IIA theory and the various possibilities for turning on fluxes. We show
explicitly how to derive the low energy effective action in this case and that indeed the
fluxes generate a potential for some of the moduli. Another aspect which we will treat
in this chapter is the relation of such effective actions to known supergravities in four
dimensions. We show in several cases that the theory we obtain is a gauged N = 2
supergravity and thus fluxes do not break explicitly supersymmetry. First we explain in
section 3.1 how the idea of fluxes has first appeared and we try to give an intuitive picture
of the modifications which are produced by turning on fluxes by considering a very simple
example. In section 3.2 we come to the first example of interest namely turning on NS-NS
fluxes in the type IIA compactification and then we continue by studying the effect of
the RR fluxes in section 3.3.

3.1 Generalities

In a KK reduction one starts with with a higher dimensional theory and assumes that the
the space in which it lives is a product of the four-dimensional space-time and a compact
internal manifold (1.1). In order to obtain a four dimensional theory one expands the
fields in a complete set of functions on the internal manifold and performs the integration
over the internal coordinates. The fields which appear in this way generically have masses
which are inverse proportional to the size of the compactification manifold. In a low
energy approximation one truncates out the massive fields and all what is considered are
the massless fields which correspond to the expansion in harmonic forms on the internal
space. These fields come in general without a potential and thus their vacuum expectation

32
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values are free parameters of the theory. The natural question to ask is whether one can
find a way to generate a potential for such fields which can lift the vacuum degeneracy.

The idea which we use in this work is based on the observation made in [77] that
a certain dependence of the ten dimensional fields on the coordinates of the internal
manifold can generate masses for some of the fields and even break supersymmetry. One
of the first questions to ask is whether this is a consistent procedure, as it is well known
that in general the KK truncation is valid only if one keeps all fields which do not depend
on the internal directions and truncate out all the others. It was argued in [77] that as
long as the dependence on the internal coordinates is introduced according to some global
symmetry of the action no new (massive) modes from the KK towers are involved and
thus the procedure is consistent. More intuitively, this symmetry is used to assure that
the Lagrangian is independent of the internal coordinates even if the fields are allowed
to depend on them and thus in the end one can still integrate out all the dependence on
the internal manifold.

Let us see how this works in a simple example [78, 79]. Consider a real scalar field λ̂
coupled to gravity in 5 dimensions1

Sλ =

∫ (
−R̂ ∗ 1− 1

2
d̂λ̂ ∧ ∗d̂λ̂

)
. (3.1)

This action is clearly invariant under

λ→ λ+ a , (3.2)

where a is a constant. Suppose we compactify this action on a circle and denote the
coordinate on the circle by y. For the metric we use the same Ansatz as in D.3 while for
the scalar we now assume

λ(x, y) = λ(x) +my . (3.3)

It is instructive to decompose the ‘field strength’ of λ as

(d̂λ̂)4 = dλ , (d̂λ̂)y = m dy . (3.4)

One notices that the four-dimensional part of d̂λ̂ is the same as in a normal KK com-
pactification, but now there is an additional piece pointing in the fifth direction which is
constant. So one can see that even if the field itself is allowed to depend on the internal
coordinate y, its field strength d̂λ̂ is independent of y. However, integrating d̂λ̂ over the
circle one obtains a non-trivial flux through this circle which is proportional to m. This is
why considering a generalized Ansatz like in (3.3) such that some field strength acquires
a purely internal value will be called from now on ‘turning on fluxes’.

In order to compute the lower-dimensional effective action one notices that only dλ̂
appears in the action (3.1) so that the additional y dependence introduced via (3.3)

1We use all the time the convention that hats indicate higher dimensional objects. Here in particular
we also use a hat on the symbol for the higher dimensional exterior derivative i.e. d̂.
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disappears from the Lagrangian and one can perform again the integral over the internal
space as in the usual KK reductions. The result now can be written as

S =

∫ (
−R ∗ 1− 1

6φ2
dφ ∧ ∗dφ− φ

4
F ∧ ∗F − 1

2
Dλ ∧ ∗Dλ− m2

2φ
∗ 1

)
, (3.5)

where the only difference compared to ordinary KK reductions is that a covariant deriva-
tive appears Dλ = dλ −mA and a potential term is generated. One can further check
that under the residual diffeomorphism transformation the KK gauge field has the usual
gauge transformation and the only way the action (3.5) can be invariant is if λ also
transforms

δAµ = dθ, δλ = θ , (3.6)

Thus what we have realized by considering a deformed KK Ansatz like (3.3) is that the
original shift symmetry of λ̂ (3.2) is gauged using the KK vector field A.

Before we move on to study some more complicated situations let us note that the
Ansatz (3.4) is not consistent with a Minkowski four dimensional space. The reason is
that (d̂λ̂)y contributes to the five dimensional energy-momentum tensor and thus the

equations of motion are no longer R̂MN = 0. This can also be seen from the action (3.5)
as the potential term does not generally has to vanish in the background.

In the following we will generalize the above situation in a straightforward way. We
consider compactifications of type II theories and allow for a very specific dependence
on the internal coordinates similar to (3.3). The symmetry we use in this case will
be the Abelian gauge symmetry associated to various p-form potentials present in the
two theories.2 As in the above example the field strength of the corresponding p-form
potential acquires a purely internal value.

Since we are going to focus on Calabi–Yau compactifications we will not be able to
naively choose a linear dependence as in (3.3). The flux (the purely internal value of the
field strength of the field for which a generalized compactification is assumed) will rather
turn out to be a harmonic form on the internal manifold, in our case the Calabi–Yau
space.3 To see this consider that we want to turn on a flux for the p-form field strength
Fp = dCp−1. As the background must be a solutions of the ten dimensional equations of
motion we find

d ∗ Fp = 0 , (3.7)

if all other fields vanish. Together with the Bianchi identity dFp = 0 this leads to a
solution for Fp which is a harmonic form on the internal manifold. Thus we can choose

Fp = miω
i
p , (3.8)

where ωi
p are harmonic p-forms on the internal manifold while mi are constants parame-

terizing the flux Fp. In principle this is not the end of the story because the value of this

2If one thinks of λ in (3.1) as a 0-form potential the transformation (3.2) is nothing but the ordinary
Abelian gauge transformation associated with p-form fields.

3Note that this is also true in the above example. Here the field strength is the one form dλ which
on the internal manifold is m dy and thus proportional to the unique harmonic one-form on the circle.



3.2. IIA with NS fluxes 35

field strength on the internal manifold gives rise to a non-vanishing energy-momentum
tensor and thus backreacts on the compactification geometry inducing a non-trivial warp
factor [29,39,40]. However, if we heuristically write the Einstein equations

Rmn ∼ (F 2
p )mn , (3.9)

in the limit that the fluxes are small we can neglect the right hand side and we are
left with the ordinary Calabi–Yau condition. On the other hand this is not always a
reliable limit. It will be natural to interpret the fluxes which we turn on as electric and
magnetic charges of the fields in the low energy effective theory. This suggest that in
a consistent quantum theory the fluxes should be quantized due to Dirac quantization
condition as was first noticed in [44]. This means that in string theory mi in (3.8) are
integer multiples of the string scale α′ and thus there is no continuous limit mi → 0. In
supergravity however, which is the α′ → 0 limit of string theory, this can be done, and
in the rest of this work we neglect this subtlety that the fluxes are quantized and we are
going to work in the limit that they are small and do not influence the background metric.
Moreover we assume that the light modes remain the same as in the no-flux case and so
we only deal with the same fields as were appearing in the normal compactifications of
type II theories and which we have seen in chapter 2.

Having discussed how to turn on fluxes in general we can start to compute low energy
effective actions in the presence of fluxes. Before that let us come back to the issue of
consistency which can play some role when fluxes for more fields are present. Turning on
a flux for some p-form field strength like in (3.8) can be problematic as the fundamental
field is the p − 1 form potential Cp−1 and not its field strength Fp. Clearly, assuming
(3.8), Cp−1 can not be globally defined as a harmonic form can not be exact. The best
one can do is to say that since a harmonic form is closed one can locally write it as a total
derivative. In our case this would mean to write ωi = dξi locally. Note that the same
happens in the above example as the term my in (3.3) is not globally defined on a circle.
If the field Cp−1 and not its field strength Fp appears in the action then we have to make
sure that the non-local contributions coming from the above considerations cancel in the
action. On the other hand if the field Cp−1 appears in the action only via its Abelian field
strength Fp = dCp−1 then a term (3.8) is harmless. In order to avoid problems coming
from non-local terms in the action we are going to consider turning on fluxes for those
fields which can appear simultaneously only via their Abelian field strength.

3.2 IIA with NS fluxes

Let us start by looking at Calabi–Yau compactifications of type IIA theory with non-
trivial fluxes for fields in the NS-NS sector (in short NS fluxes). This is a clear example
which is computationally not much more involved than the usual Calabi–Yau compactifi-
cation presented in section 2.3.3. Thus we use it to explain how to obtain the low energy
effective action when fluxes are turned on and how the resulting theory can be related
to gauged supergravity.
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3.2.1 The low energy effective action

In section 2.1.1 we have already introduced the spectrum for the type IIA supergravity.
The bosonic fields in the NS-NS sector are the metric ĝMN the dilaton φ̂ and the an-
tisymmetric tensor B̂2. In all what follows we keep the dilaton to be constant on the
internal manifold and thus the only form-field we have at our disposal to turn on fluxes
is the B-field. So we consider a background configuration where the field strength of this
field Ĥ3 = dB̂2 has a non-trivial flux which is parameterized by the elements of the third
cohomology group on the Calabi–Yau manifold Y , H3(Y )

Ĥ int
3 = pAαA − qAβ

A , (3.10)

where (pA, qA) are the 2h(2,1) + 2 flux parameters needed in order to completely specify
the internal value of Ĥ3. (αA, β

A), A = 0, . . . , h(2,1) is the real basis for H3(Y ) which
is normalized as in (2.25). Except for this modification the background is the same
as discussed in section 2.3.3. Thus we assume the metric (2.26) and take all other
background field strengths except for Ĥ3 to vanish.

In order to see more clearly how the Ansatz (3.10) modifies the low energy action it is
useful to make a field redefinition in the type IIA theory in ten dimensions such that the
two-form field B2 appears in the action only in the form of H3 = dB2. This is achieved
by performing the following transformation Ĉ3 → Ĉ3 + Â1 ∧ B̂2. The form of the action
(2.2) remains the same, but now with the following definitions

F̂4 = dĈ3 − Â1 ∧ Ĥ3 , Ĥ3 = dB̂2 , Ltop =
1

2
Ĥ3 ∧ Ĉ3 ∧ dĈ3 . (3.11)

Note that the above field redefinitions also change the gauge transformations (2.5) into

δB̂2 = dΛ̂1 , δĈ3 = dΣ̂2 ,

δÂ1 = dΘ̂ , δĈ3 = Θ̂ ∧ dB̂2 .
(3.12)

Let us now see how the compactification with fluxes proceeds in this case. The key
point to notice is that considering the non-trivial configuration (3.10) amounts to shift
the expansion in harmonic forms of the field strength Ĥ3 (2.32) according to

Ĥ3 → Ĥ3 + pAαA − qAβ
A . (3.13)

This is the reason why we needed the action to be expressed only in terms of the field
strength Ĥ3 as the fluxes enter the compactified theory only via the field strengths for
which non-trivial background values are considered. Beside this everything else remains
as in section 2.3.3 and in particular we consider the same light spectrum and thus we
again assume the same field expansions as in (2.31). What (3.13) does modify are the
field strengths which now have different expansion from the ones in (2.32)

F̂2 = dA0 ,

Ĥ3 = dB2 + dbiωi + pAαA − qAβ
A , (3.14)

F̂4 = dC3 − A0 ∧H3 + (dAi − A0dbi) ∧ ωi +DξA ∧ αA −Dξ̃A ∧ βA ,
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where we denoted

DξA = dξA − pAA0 , Dξ̃A = dξ̃A − qAA
0 . (3.15)

At this stage one notices that the effect of turning on fluxes (3.13), like in the example
from section 3.1, is to gauge the previous isometries ξA → ξA+const and ξ̃A → ξ̃A+const.
Indeed one can directly check by ‘compactifying’ the gauge transformations (3.12) and
taking into account (3.13) that the variations of the fields ξA and ξ̃A become

δA0 = dΘ , δξA = pAΘ , δξ̃A = qAΘ . (3.16)

This motivates the notation (3.15) as these are gauge invariant quantities and moreover
it is natural to interpret them as proper covariant derivatives. At this point this is the
only difference compared to the massless case discussed in section 2.3.3. Furthermore the
gauge invariance assures that in the final form of the action the normal derivatives will
be replaced by the covariant ones (3.15). However these are not the only modifications
produced by (3.13) and in order to see the full effect of the fluxes one should go deeper
into the details of the compactification.

There is one more difference to the massless case presented in section 2.3.3 which one
can immediately notice. Due to the terms in the expansion of Ĥ3 which lie completely in
the Calabi–Yau space the kinetic term of B̂2 generates after performing the Calabi–Yau
integrals a potential term in the four dimensional action

VH = −1

4

e−2φ

K
(qA −MAC p

C)(ImM)−1AB(qB − M̄BD p
D) , (3.17)

where M was defined in (2.35). Finally the topological term (3.11) produces a new
interaction

δLtop = −(pAξ̃A − qAξ
A) dC3 , (3.18)

which upon the dualization of C3 using the formulae in appendix D.2.2 leads to

LC3 → − 1

2K
(pAξ̃A − qAξ

A)2 ∗ 1− (pAξ̃A − qAξ
A)A0 ∧H3 . (3.19)

Again as in section 2.3.3 we have put to zero the constant to which C3 is dual. We did
this anticipating that it plays a special role when RR fluxes are turned on and thus we
will consider this constant properly in the next section. Note that unlike section 2.3.3
the dualization of C3 has produced a non-trivial result even if the constant to which C3

is dual was taken to be zero. This is so only due to the additional interaction for C3 in
(3.18). The first term in (3.19) gives another contribution to the scalar potential which
now reads

V = −e
−2φ

4K
(q − pM)(ImM)−1(q − pM̄) +

1

2K
(pAξ̃A − qAξ

A)2 , (3.20)

while the second term produces the right gaugings for the scalar which is dual to B2. This
is not difficult to see using the formulae in appendix D.2.1. The result of this dualization
is

LB2 → La = −e
2φ

4

[
Da− (ξ̃ADξ

A − ξADξ̃A)
]
∧ ∗

[
Da− (ξ̃ADξ

A − ξADξ̃A)
]
, (3.21)
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where
Da = da+ (pAξ̃A − qAξ

A)A0 . (3.22)

So in addition to the scalars ξA and ξ̃A the axion is also charged as one can see from the
above covariant derivative.

After redefining the gauge fields according to

Ai → Ai − biA0 , (3.23)

and rescaling the metric with the dilaton factor e2φ the action takes the form

SIIA =

∫ [
− 1

2
R ∗ 1− gijdt

i ∧ ∗dt̄j − huvDq
u ∧ ∗Dqv − VE ∗ 1

+
1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J
]
, (3.24)

where the gauge couplings are given by (2.39) and huv can be read from (2.40) while the
Einstein frame potential reads

VE = − e
2φ

4K
(q − pM)(ImM)−1(q − pM̄) +

e4φ

2K
(pAξ̃A − qAξ

A)2 . (3.25)

As one can easily see the fluxes did not change the form of the action (2.38) too much.
The only differences are the covariant derivatives (3.15) and (3.22) and the appearance
of a potential (3.25). One can also notice that the action (3.24) has a very similar
form to the general N = 2 gauged supergravities (B.20). In the next section we will
indeed show that the action (3.24) describes a gauged supergravity. Before we see this
let us make one more comment regarding the potential (3.25). The matrix M defined
in (2.35) depends on the complex structure moduli.4 Thus the NS fluxes in type IIA
compactifications lift the flat directions corresponding to the complex structure moduli.
Furthermore the potential (3.25) also depends on the scalars ξA and ξ̃A. As these scalars
combine together with the complex structure deformations to form the hyper-multiplets
we conclude that the potential lift all the flat directions corresponding to the scalars in
the hyper-multiplets. One can also notice a dependence of the potential on the Calabi–
Yau volume K and on the four dimensional dilaton φ. However it is easy to see that these
directions are not stabilized and the potential has a run-away form with the minimum
reached at infinity. Finally we note that due to the fact that the matrix ImM is negative
definite the potential is explicitly positive.

Relative to the moduli stabilization problem it is also worthwhile mentioning that it
was argued [48, 72, 73] that the overall effect of turning on fluxes is the appearance of a
superpotential. In analogy with these works the superpotential which is generated in the
case of type IIA theory with NS fluxes is

W ∼
∫

Y3

(
C3 + ie−φΩ

)
∧H3 , (3.26)

4An easy way to see this is to note that M plays the role of the gauge couplings in type IIB com-
pactifications and thus should depend on the scalars in the vector multiplets which in this case are the
complex structure deformations.
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where it is understood that only the purely internal values of the above fields contribute to
the integral. In general the superpotential was argued to beW =

∫
calibration∧flux5 [73].

In the case above one can easily see that the term containing C3 should be present as
it will precisely give rise to the second term in the potential (3.25). As a second check
one notices that the superpotential (3.26) nicely matches the one found in [81] for M-
theory compactified on manifolds with G2 holonomy with four form flux G4. Indeed
‘reducing’ the G2 structure to an SU (3) one [82, 83] and considering a flux only for B2

one immediately obtains the formula (3.26) for the superpotential.

3.2.2 Relation to gauged supergravity

Let us now discuss the relation between the theory obtained in (3.24) and the known
N = 2 supergravities. As presented in appendix B there existN = 2 supergravity theories
with charged matter which are termed gauged supergravities. The difference from a
normal (ungauged) supergravity is that some of the isometries of the scalar manifold are
gauged in that the ordinary derivatives are replaced by covariant ones

Dφα = ∂φα − kα
I (φ)AI , (3.27)

where φα denotes a generic scalar field either from the hypermultiplets or from the vector-
multiplets (the index α runs over all the scalars in the theory), kα

I (φ) is the killing
vector corresponding to the isometry which is gauged and AI denotes the vector fields.
Supersymmetry further requires a scalar potential to be present which has the form

VE = eKXIX̄J(gı̄j k
ı̄
Ik

j
J + 4huv k

u
I k

v
J)−

[1

2
(ImN )−1IJ + 4eKXIX̄J

]
P x

I P
x
J , (3.28)

where K denotes the Kähler potential, XI are the (complex) scalars in the vector multi-
plets, the index u runs over the hyper-scalars, P x

I are the Killing prepotentials introduced
in (B.17), N denotes the gauge coupling matrix defined in (B.7) while gı̄j and huv are
the metrics on the two scalar manifolds.

To make a connection between the theory obtained in the previous section and N = 2
gauged supergravities the only thing to check is that the potential (3.25) can be derived
using the general formula (3.28) and the Killing vectors defined in (3.27) which can be
read off from (3.15) and (3.22). For this we would have to solve the equations for the
Killing prepotentials (B.17) and then replace them in the general formula (3.28).

For the case at hand however, (3.28) considerably simplifies in the sense that the term
which contains the Killing prepotentials vanishes. To see this we first note that since only
one vector field A0 participates in the gaugings (3.15) and (3.22), the only non-trivial
components of the Killing prepotentials P x

I in (B.17) are the ones for which I = 0. Using
the expressions for the Kähler potential of the of the scalars in the vector multiplets

5Intuitively a calibration is a closed p-form which minimizes the volume of p-submanifolds. For a
more precise definition see [80].
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(B.25) and for the inverse gauge coupling matrix (B.33) and the fact that X0 = 1 one
immediately sees that

1

2
(ImN )−1 00 + 4eKX0X̄0 = 0 . (3.29)

Inserting (3.29) into (B.19) the formula for the gauged supergravity potential in this case
becomes

VE = (4eKhuvk
u
I k

v
J + ḡıjk

ı̄
Ik

j
J)XIX̄J . (3.30)

As the scalars in the vector multiplets are not charged the corresponding Killing vectors
ki

I = 0 vanish. Furthermore using again the fact that only one vector field, namely
A0 participates in the gaugings only the Killing vectors ku

0 survive and thus the above
formula further simplifies to

VE = 4eKhuvk
u
0k

v
0 . (3.31)

The remaining Killing vectors ku
0 can be immediately read off from the covariant deriva-

tives (3.15) and (3.22) to be

kξB

0 = pB , kξ̃B
0 = qB , ka

0 = (pAξ̃A − qAξ
A) . (3.32)

Using the metric components of the charged scalars from (2.40), the evaluation of (3.31)
precisely results in the potential (3.25) and thus establishes the consistency with gauged
supergravity.

3.3 IIA with RR fluxes

3.3.1 The low energy effective action

Let us continue our study about fluxes in type IIA compactifications by focusing on the
fluxes for the fields in the RR sector. As we will see later it is natural to start not
from the usual type IIA theory as we did in the previous section, but from its massive
version briefly presented in section 2.1.2. Thus we consider the ten dimensional action
(2.2) with the field strengths defined in (2.6) and the topological term in (2.7). With the
action written in this form the RR fields A1 and C3 appear only via their Abelian field
strengths dA1 and dC3 respectively for which we assume non-trivial internal values. For
the background field configuration which we should specify before performing the KK
reduction this means that we consider the metric (2.26), but now unlike in section 2.3.3
we take dA1 and dC3 to be non-vanishing.

As we explained before we assume the same zero modes as in the massless case and
thus we are going to use the same field expansion as in (2.31). The difference comes from
the fact that the field strengths dA1 and dC3 are shifted according to6

dĈ3 → dĈ3 + eiω̃
i , dÂ1 → dÂ1 −miωi . (3.33)

6The minus sign in the last relation was chosen to make the symplectic invariance explicit later.
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The flux parameters (ei,m
i) are constants and ωi and ω̃i were introduced in (2.24) and

form basis for the harmonic (1, 1) and (2, 2)-forms respectively. As in the previous section
the fluxes (3.33) enter in the compactification via the field strengths (2.6) for which the
expansions in the Calabi–Yau harmonic forms (2.32) is replaced with

Ĥ3 = dB2 + dbiωi ,

F̂2 = dA0 +mB2 − (mi −mbi)ωi , (3.34)

F̂4 = dC3 −B2 ∧ dA0 − m

2
(B2)

2 + (dAi − dA0bi +miB2 −mB2b
i) ∧ ωi

+(dξAαA − dξ̃Aβ
A) + (bimj − 1

2
mbibj)Kijkω̃

k + eiω̃
i ,

where Kijk is defined in (2.34) and furthermore we used (B.30).

The derivation of the four-dimensional effective action proceeds as in section 2.3.3 by
inserting (3.34) into the ten dimensional action. Except for a couple of new contributions
which we are going to discuss in the following the structure of the theory is the same and
we are not going to repeat the calculations presented in section 2.3.3.

Let us study one by one the modifications produced by the fluxes. First in the field
strength F̂2 of Â1 one notices the presence of a term which points only along the internal
manifold. This will give rise in the kinetic term of A1 to a potential piece

V1 = 2K(mi −mbi)(mj −mbj)gij , (3.35)

where gij(v) = 1
4K

∫
Y3
ωi ∧ ∗ωj is the metric on the space of Kähler deformations (2.34)

and K denotes the volume of Y3. In addition the following interaction and mass terms
for B2 arise

δLint = −mKB2 ∧ ∗dA0 − m2K
2

B2 ∧ ∗B2 . (3.36)

Similarly, due to the additional term in F4 which lies completely in the internal manifold,
the kinetic term of Ĉ3 also contributes to the potential

V3 =
1

8K
(ei + bkmlKikl −

1

2
mbkblKikl)(ej + bmmnKjmn −

1

2
mbmbnKjmn)gij , (3.37)

and to the interaction terms for B2

δLint = −4K(mi −mbi)B2 ∧ ∗
(
dAj − dA0bj

)
gij

−2K(mi −mbi)(mj −mbj)gijB2 ∧ ∗B2 (3.38)

−K
2

(
dC3 −B2 ∧ dA0 − m

2
(B2)

2
)
∧ ∗

(
dC3 −B2 ∧ dA0 − m

2
(B2)

2
)
.

Here gij is defined as gij = 4K
∫

Y3
ω̃i ∧ ∗ω̃j and denotes the inverse metric on the com-

plexified Kähler cone. Finally in addition to (2.33) the topological terms (2.7) produce
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the following interactions due to (3.33)

δLtop = −B2 ∧
(
dAiei + bidAjmkKijk − bieidA

0 − bibjmkKijkdA
0
)

(3.39)

−1

2
(2biei + bibjmkKijk −

m

3
bibjbkKijk) dC3 +

m

2
B2 ∧ (dAi − dA0bi)bjbkKijk

−1

2
(miei −mbiei + bimjmkKijk −

3m

2
bibjmkKijk +

m2

2
bibjbkKijk)(B2)

2 .

The above expressions arrange themselves into the form of an N = 2 massive su-
pergravity with the parameters e and m playing the role of charges and masses. To see
this we should first recover the normal N = 2 spectrum. In this process we do not set
the three-form C3 to zero as we did in sections 2.3.3 and 3.2, but rather dualize it to a
constant e0 which will turn out to come on the same footing as the other RR fluxes ei

which we turned on7. Using the formulae in the appendix D.2.2 one can write the action
dual to C3 as

LC3 → Le0 = − 1

2K
(
e0 + eib

i +
1

2
bibjmkKijk −

m

6
bibjbkKijk

)2 ∗
1 (3.41)

−
(
e0 + eib

i +
1

2
bibjmkKijk −

m

6
bibjbkKijk)(B2 ∧ dA0 +

m

2
(B2)

2
)
.

Let us stress that the appearance of the parameter e0 obtained by dualizing C3 does
not depend on the fact that we have turned on other fluxes. Le0 does not vanish in the
limit m = mi = ej = 0 and thus is also present in the compactification of massless type
IIA supergravity without any fluxes turned on. From a supergravity point of view this
parameter is completely arbitrary and one can choose to set it to zero and recover in this
way the results of section 2.3.3.

Putting together the above results one can write the low-energy effective action of
type IIA theory compactified on a Calabi–Yau three-fold in the presence of background

7This assertion should not be very surprising for the following reason. Consider the dual formulation
of type IIA where instead of a three-form potential C3 one deals with a five form C5. The flux e0 appears
in this picture as the unique flux for dC5 which is proportional to the volume form on the Calabi–Yau
manifold. Moreover, the fluxes ei now come from the dualization of the h(1,1) three-forms Ci

3 which one
obtains in the expansion of C5 in the harmonic (1, 1) forms on the Calabi–Yau space

C5 ∼ Ci
3 ∧ ωi . (3.40)

From these arguments it should be clear that there is indeed a relation between the constant e0 and the
fluxes ei.
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RR fluxes in the following form

S =

∫
e−2φ

(
− 1

2
R∗1 + 2dφ ∧ ∗dφ− 1

4
H3 ∧ ∗H3 − gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j

)
+

1

2

(
ImM−1

)AB
[
dξ̃A +MACdξC

]
∧ ∗

[
dξ̃B + M̄BDdξD

]
(3.42)

+
1

2
H3 ∧ (ξAdξ̃A − ξ̃AdξA) +

1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J

−B2 ∧ J2 −
1

2
M2B2 ∧ ∗B2 −

1

2
M2

T B2 ∧B2 − V ,

where I = 0, . . . , h(1,1) and NIJ ,MAB are standard supergravity couplings defined in
(2.39) and (2.35)). One notices that except for the two form which has not been yet
dualized the first two lines are exactly like in the standard case presented in section
2.3.3. The effects of turning on fluxes can be seen only in the last line of (3.42) and
consist of new couplings of the NS two-form B2 and the quantities J2, M

2, M2
T are

found to be8

J2 = (eIF
I −mIGI) ,

M2 = −mIImNIJm
J , (3.43)

M2
T = −mIReNIJm

J +mIeI ,

where we denoted m by m0 and introduced the vectors mI = (m0,mi), eI = (e0, ei).
Furthermore, we introduced the magnetic duals of F I ≡ dAI by

GI ≡ ImNIJ ∗ F J + ReNIJF
J . (3.44)

Finally the string frame potential in (3.42) is found to be

V = −1

2
(eI −NIKm

K) (ImN )−1IJ (eJ − N̄JLm
L) , (3.45)

where (ImN )−1 is given in (B.33). In contrast to the case of NS fluxes the potential
found above depends on the complexified Kähler deformations via the matrix N . In
the Einstein frame potential the dilaton appears as an overall factor and thus again the
potential has the run-away behavior in this direction.

Let us again write down the superpotential which corresponds to this case [48,72,73]

W ∼ e0 +

∫
Y3

K ∧ F4 +

∫
Y3

K ∧K ∧ F2 +m0

∫
Y3

K ∧K ∧K , (3.46)

where K is the complexified Kähler form (B.21). In this case a relation to M-theory is
harder to see as in particular m0 does not have an interpretation in M-theory while the
two form field strength F2 can not be interpreted as a flux as it has a geometric origin.
However the second term in the superpotential (3.46) can be obtained again from [81] by
reducing the G2 structure to an SU (3) one [82,83].

8Note that M2 is positive since in our conventions ImNIJ is negative definite.
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3.3.2 Relation to gauged supergravity

Let us now turn to study the connection between the theory obtained in the previous
section and gauged supergravities. For the case at hand this is a more delicate issue due
to the non-standard couplings which appeared in (3.42).

An important point in understanding the structure of the theory are the symmetries of
the action (3.42). Beside the normal gauge invariance associated to the vector fields δAI =
dΘI which is manifest in (3.42) there is also a Stuckelberg transformations associated to
the two-form B2 which also leaves the action inert

δB2 = dΛ , δC3 = Λ ∧ dA0 , δAI = −mIΛ . (3.47)

The way to see how these transformations appear is by simply reducing the ten-dimensional
gauge transformations (2.8) to four dimensions and taking into account the fact that we
have turned on fluxes (3.33). Note that these transformations are very similar to the
original ten-dimensional ones as one can go to a gauge where the B-field eats one of the
vector fields and effectively becomes massive. The only difference is that now we have
h(1,1) + 1 mass parameters and we can gauge away any of the vector fields.

It is a remarkable fact that both in the action (3.42) and in the gauge transformations
(3.47) the constants m and e0 naturally combine with the 2h(1,1) flux parameters ei and
mi. As we will see in a while this fact turns out to be crucial for preserving the symplectic
invariance of the theory. To see this let us first introduce the notation

F̌ I ≡ dAI +mIB2 , B

ǦI ≡ ReNIJ F̌
J + ImNIJ ∗ F̌ J .

(3.48)

With these definitions one can rewrite the Bianchi identities and the equations of motion
for the vector fields as

d dAI = dF̌ I −mIdB2 = 0 ,

∂L
∂AI

= dǦI − eIdB2 = 0 .
(3.49)

Furthermore, the equation of motion for B2 reads

∂L
∂B2

=
1

2
d(e−2φ ∗ dB2)+m

IǦI − eIF̌
I = 0 . (3.50)

Now one can observe that the equations of motion derived above are invariant under
symplectic transformations under which (F̌ i, ǦI) and (mI , eI) transform as symplectic
vectors i.e.(

mI

eI

)
→

(
U Z

W V

) (
mI

eI

)
,

(
F̌ I

ǦI

)
→

(
U Z

W V

) (
F̌ I

ǦI

)
, (3.51)

where U, V,W,Z are (h(1,1) + 1) × (h(1,1) + 1) matrices satisfying (B.12) such that the
2(h(1,1) +1)×2(h(1,1) +1) matrix from the above equation is a symplectic matrix. This is
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a highly non-trivial and somehow unexpected result. As explained in appendix B N = 2
supergravities enjoy the property that they are invariant under transformations which
rotate the electric and magnetic field strengths into one another. However, when gauging
some of the isometries of the scalar manifold in order to obtain a gauged supergravity
one needs to make a choice for an electric basis and so gaugings break the symplectic
invariance explicitly. In other words it is impossible to have fields which carry both
electric and magnetic charges coupled to N = 2 supergravity9. What the above results
tell us is that one can avoid these problems if instead of considering scalar fields which
are charged under both electric and magnetic fields one couples a two-form field, which
in four dimensions carries the same number of degrees of freedom as a real scalar, to both
electric and magnetic field strengths as in (3.42). In this way there is no need to fix the
symplectic basis and one can consistently couple dyonic objects (two-forms) to N = 2
supergravity in a symplectic invariant fashion.

Let us now investigate the relation between the action derived in (3.42) and the
standard gauged N = 2 supergravity as summarized in appendix B. A straightforward
approach as in the case of NS fluxes will not be possible as now the action (3.42) features
new ingredients like a mass for the two form field B2 and couplings to both electric and
magnetic field strengths. As such a supergravity was not constructed until now we will
not be able to give a rigorous proof of the relation between the theory obtained in (3.42)
and N = 2 supergravity. We will rather try to show some evidence that such a relation
should indeed exist.

Let us first observe that the masses for B2 and the couplings to the magnetic field
strengths vanish for mI = 0.10 Since we have established the symplectic invariance of the
theory we can always perform a symplectic transformation on the vector (mI , eI) and go
to a basis where all mI vanish11 (

mI

eI

)
→

(
0
e′I

)
. (3.52)

In this basis the ‘new’ couplings considerably simplify and from (3.43) and (3.45) one
immediately obtains

M = MT = 0 , J2 = e′IF
′I , V = −1

2
e′I (ImN ′)

−1IJ
e′J , (3.53)

9An attempt to cure this problem was done in [46] and we will come back to this work later.
10At a first sight it seems that if only the magnetic charges are present the B2 field is still massive.

However this is just an artifact of the basis we have chosen to describe the gauge fields. To be more
precise in the case all the electric fluxes vanish we are basically describing (magnetic) charged fields
using the (electric) dual vector fields. If we go to the magnetic basis for the vector fields all the masses
for the B2 field disappear and we are left with normal couplings like in (3.53). We will elaborate more
on this topic in the last chapter where the problem will become more stringent.

11We should stress again that from a pure supergravity point of view the fluxes mI , eI are just
continuous parameters and so there always exist an Sp(2h(1,1) + 2,R) transformation such that the
rotated magnetic fluxes vanish. In a quantum theory however, the fluxes become quantized and the
Sp(2h(1,1) + 2,R) invariance is generically broken to Sp(2h(1,1) + 2,Z). In this case, it is impossible to
set the magnetic charges to zero by an Sp(2h(1,1) + 2,Z) rotation.
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where the prime indicates the rotated basis. The drawback of this basis is that also the
gauge couplings N of the action (3.42) change according to (B.14) and the relation to
the prepotential as given in (B.7) is more complicated. So we have the choice to work
either with the standard gauge couplings and a set of complicated interactions of B2 or
to transform to a new basis where the gauge couplings are more complicated but B2

remains massless. In this latter basis the consistency with gauged supergravity is easily
established so let us first discuss this case.

For mI = 0, B2 is massless and thus can be dualized to a scalar a as in appendix D.2.1.
After a Weyl rescaling gµν → e2φgµν the dual action reads

S =

∫ [
− 1

2
R∗1 +

1

2
ImN ′

IJF
′I ∧ ∗F ′J +

1

2
ReN ′

IJF
′I ∧ F ′J

−gijdt
i ∧ ∗dt̄j − huvDq

u ∧ ∗Dqv − VE

]
, (3.54)

where the huv denotes the standard quaternionic metric [41] which is given in (2.40). The
only scalar which is charged in the above action is the dual of the NS two-form B2 and
its covariant derivative is given by

Da = da+ 2e′IA
′I . (3.55)

VE represents the potential in the Einstein frame and is given by

VE = −e
4φ

2
e′I (ImN ′)

−1IJ
e′J . (3.56)

In order to establish the consistency with gauged N = 2 supergravity we need to show
that the potential (3.56) is consistent with the general form (3.28) known from gauged
supergravity. Let us first note that only one scalar a in the hyper-multiplets carries gauge
charge while in the vector multiplet sector all scalars remain neutral. In terms of the
Killing vectors defined in (3.27) equation (3.55) implies

ku
I = −2e′Iδ

ua , ki
I = 0 . (3.57)

Inserted into (3.28) and using (2.40) one arrives at

VE = −1

2

[
(ImN ′)−1

]IJ
P x

I P
x
J + 4eKXIX̄J(e4φe′Ie

′
J − P x

I P
x
J ) . (3.58)

We are left with the computation of the Killing prepotentials P x
I defined in (B.17).

Following [46] one first observes that for the constant (field independent) Killing vectors
as in (3.57) equations (B.17) are solved by

P x
I = ku

Iω
x
u , x = 1, 2, 3 , (3.59)

where ωx
u is the SU(2) connection on the quaternionic manifold. For the case at hand ωx

u

has been computed in [41] and here we only need their result ωx
a = −1

2
e2φδ3x. Inserted

into (3.59) using (3.57) we obtain

P 1
I = P 2

I = 0 , P 3
I = −e2φe′I . (3.60)
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One can now see that the last term in (3.58) vanishes while the first one reproduces the
potential (3.56). This establishes the consistency with N = 2 gauged supergravity.

Let us return to the discussion of the action in the unrotated basis where both eI

and mI are non-zero. In this case B2 is massive and the relation with the standard
gauged supergravity is not obvious and, as far as we know, has not been discussed in
the literature. However, one can use the fact that a massive two-form in d = 4 is
Poincaré dual to a massive vector [84–86]. This generic duality is briefly summarized in
appendix D.2.3. In the following we perform the duality transformation and display the
dual action in terms of only vector fields.

Starting from the action (3.42) it is straightforward to apply the results in ap-
pendix D.2.3. Denoting by AH the dual of the massive B2 the resulting action reads

S =

∫
e−2φ

(
− 1

2
R ∗ 1 + 2dφ ∧ ∗dφ− gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j

)
+

1

2

(
ImM−1

)AB
[
dξ̃A −MACdξC

]
∧ ∗

[
dξ̃B − M̄BDdξD

]
− V

+
1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J − e2φAH ∧ ∗AH

−1

2

M2

M4 +M4
T

(
FH − J ′2

)
∧ ∗

(
FH − J ′2

)
(3.61)

+
1

2

M2
T

M4 +M4
T

(
FH − J ′2

)
∧

(
FH − J ′2

)
,

where

FH = dAH , J ′2 = J2 −
1

2
d(ξ̃AdξA − ξAdξ̃A) , (3.62)

and the quantities M, MT and J2 are defined in (3.43). The above action contains an
explicit mass term for the vector field AH which can equivalently be written as the
covariant derivative of a Goldstone boson

e2φAH ∧ ∗AH =
1

4
e2φDa ∧ ∗Da , (3.63)

where
Da = da+ 2A′H . (3.64)

(A′H denotes the gauge transformed vector potential.) Inserting (3.63) into (3.61) and
absorbing 1

2
(ξ̃AdξA − ξAdξ̃A) into a further redefinition of AH results in

S =

∫
−1

2
R∗1− gijdt

i ∧ ∗dt̄j − huvDq
u ∧ ∗Dqv − VE

+
1

2
Im N̂ÎĴF

Î ∧ ∗F Ĵ +
1

2
Re N̂ÎĴF

Î ∧ F Ĵ , (3.65)

where also a Weyl rescaling gµν → e2φgµν has been performed and we introduced the

index Î = (I,H). VE is the Weyl rescaled potential related to V of (3.45) by VE = e4φV .
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huvDq
u ∧ ∗Dqv is again the standard quaternionic metric given in (2.40) with the only

difference that (3.55) is replaced by (3.64). Moreover, the ‘new’ (h(1,1) + 2)× (h(1,1) + 2)
dimensional gauge coupling matrix N̂ÎĴ is given by

N̂IJ = NIJ − i µ
(
eI −NIKm

K
)(
eJ −NJLm

L
)
, N̂HH = −i µ ,

N̂IH = i µ
(
eI −NIKm

k
)
, µ ≡ M2 + iM2

T

M4 +M4
T

. (3.66)

One easily shows that N̂IJm
J = eI and hence Im N̂ÎĴ has a null vector while Re N̂ÎĴ has

one constant eigenvalue. This implies that one (linear combination) of the vector fields
only has a topological coupling.

The dualization of B2 resulted in an additional massive vector AH and we chose to
write the mass term as the coupling of a Goldstone boson a. The number of physical
degrees of freedom is of course unchanged since the action (3.61)/(3.65) is still invariant
under the gauge transformations (3.47) which after dualization become

δAI = −mIΛ1 , δAH = 0 . (3.67)

AH being the Poincaré dual of H3 is invariant under (3.47) but one of the other h(1,1) +1
vector fields in (3.65) can be gauged away by (3.67). In this ‘unitary gauge’ the symplectic
invariance is lost. Thus the theory can be formulated in terms of only vector fields but
symplectic invariance demands the presence of an additional auxiliary vector field with
only topological couplings. In any physical gauge the symplectic invariance is broken.

To conclude this section let us discuss another aspect of the dualization of the massive
B-field. Equations (3.49) can be solved for F̌ I and ǦI in terms of electric and magnetic
potentials AI and ÃI

F̌ I = mIB2 + dAI , ǦI = eIB2 + dÃI . (3.68)

Now the equation of motion for B2 becomes

1

2
d(e−2φ ∗ dB2) +mIdÃI − eIdA

I = 0 . (3.69)

This suggests that we can introduce a scalar field a (the dual of B2) which obeys

e−2φ ∗ dB2 = Da ≡ da− 2mIÃI + 2eIA
I . (3.70)

This definition has the feature that it maintains explicitly the symplectic invariance
closely related to the proposal of [46, 49]. However, in (3.68) B2 and not dB2 appears
and thus it is not possible to give an action in terms of the dual scalar a with electric
and magnetic couplings. Nevertheless, one can compute the electric and magnetic Killing
prepotentials corresponding to the gauging (3.70) as suggested in [46,49]. They are very
similar to the ones found only for the electrically charged particles (3.60)

P 3
I = e2φeI , P̃ I3 = e2φmI , P 1

I = P 2
I = P̃ I1 = P̃ I2 = 0 . (3.71)
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Using the formula for the potential suggested in [46]

VE = 4eKXIX̄Jhuv(k
u
I − k̃uKNKI)(k

v
I − k̃vKN̄KI) (3.72)

−
[
1

2
(ImN )−1IJ + 4eKXIX̄J

]
(P x

I − P̃KxNKI)(P
x
J − P̃KxN̄KJ) ,

which is the symplectic invariant extension of (3.28), one immediately recovers the po-
tential obtained in (3.45).

This concludes our analysis about fluxes in type IIA theory. We will next move on to
type IIB case and we will mainly be interested in how mirror symmetry relates the two
theories when fluxes are turned on.



Chapter 4

Type IIB theory with fluxes

Having discussed the effect of fluxes in type IIA compactifications in the last chapter we
now turn our attention to type IIB theory. The main reason for this is mirror symmetry
as we want to study how the fluxes modify it. We present in the first two sections type IIB
compactifications with RR and NS-NS fluxes turned on and in the last section we start the
discussion about mirror symmetry at the level of the four-dimensional effective actions.
In order to obtain the full picture it will turn out that we need some generalization of
the notion of flux we have introduced in the previous chapter and this will motivate the
work in the last chapter.

4.1 IIB with RR fluxes

Let us first see what is the effect of RR fluxes in type IIB compactifications. Similar to the
previous chapter we rely on the usual Calabi–Yau compactifications of type IIB theory
presented in section 2.3.4 and do not repeat once more the common details. Rather we
emphasize the differences which appear when turning on fluxes.

In order to turn on RR fluxes we perform the field redefinition A4 → A4 + 1
2
B2 ∧ C2

which has the effect that the field C2 appears in the action only as dC2. The form of the
action (2.9) is not modified, but now the field strengths have a different form

Ĥ3 = dB̂2 , F̂3 = dĈ2 − ldB̂2 , F̂5 = dÂ4 + B̂2 ∧ dĈ2 . (4.1)

As we have discussed at length in the case of type IIA theory, turning on fluxes does
not change the light spectrum and thus one assumes again the field expansions (2.41).
The only modification is that the field strength of C2 is shifted according to1

dĈ2 → dĈ2 +mAαA − eAβ
A , (4.2)

1Even if the RR sector of type IIB theory also comprises zero and four-form potentials l and A4

with one and five-form field strengths one can not use these fields to turn on fluxes in a Calabi–Yau
compactification as there are no harmonic one or five-forms on such a space. Thus the only possibility
when we want to turn on RR fluxes is to consider the field strength of the RR two-form C2.
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where eA,m
A are the constant background fluxes. With this, the expansion of the field

strengths F̂3 in the Calabi–Yau harmonic forms turns into

F̂3 = dC2 − lH3 + (dci − ldbi)ωi +mAαA − eAβ
A . (4.3)

As in the other cases presented in the last chapter the compactification proceeds by
inserting the field expansions (2.41) and (4.2) into the action and performing the integrals
over the Calabi–Yau space. Let us shortly see what are the modifications compared to
section 2.3.4 when fluxes are turned on. First of all due to the term in the expansion of
F̂3 (4.3) which points only in the internal directions the kinetic term of C2 produces a
potential which reads

V = −1

2

(
eA −mCMCA

)
(ImM)−1AB

(
eB − M̄BDm

D
)
, (4.4)

where the matrix M was defined in (2.35). Furthermore, the fluxes (4.2) enter the
expansion of F̂5 which now becomes

F̂5 = (dDi
2 + bidC2 +B2 ∧ dci) ∧ ωi + F̌AαA − ǦAβ

A + (dρi + bjdckKijk) ∧ ω̃i , (4.5)

where we used the definitions

F̌A ≡ FA +mAB2 , ǦA ≡ GA + eAB2 . (4.6)

Finally, the topological term produces a Green-Schwarz type interaction

δLtop = −1

2
(FAeA −GAm

A) ∧B2 . (4.7)

Let us pause for a while and analyze the effect of the fluxes at this stage. Comparing
with section 3.2 the above formulae have a similar structure. First of all (4.6) is very
similar to (3.15) with the only difference that now we deal with higher degree form-fields.
In the same way (4.7) is the analog of (3.18) while the potential (4.4) corresponds to
(3.17). The analogy we have just seen has no deep meaning and only denotes a similar
structure which arises during the calculations. The only reason for which we mentioned
it is to stress that as in section 3.2 from this point on the calculation is very similar to the
usual Calabi–Yau compactification. The difference is that in the end the field strengths
FA are replaced by the gauge invariant2 quantity F̌A from (4.6).

As in section 2.3.4 just substituting the field expansions (2.41) and (4.3) into the
action does not lead to the correct dynamics in four dimensions. For this one has to
further impose the self-duality condition on F̂5 at the level of the four-dimensional fields.
Note that the only modification in the expansion of F̂5 is that the electric and magnetic
field strengths FA and GA are replaced by the quantities F̌A and ǦA defined in (4.6).
Thus the self-duality condition involving Di and ρi which is given in the second line of

2The interesting gauge invariance of (4.1) is now δB̂2 = dΛ1, δÂ4 = −Λ1 ∧ dĈ2. Considering (4.2)
this leads to δB2 = dΛ1, δFA = −mAdΛ1, δGA = −eAdΛ1 and thus the quantities F̌A and ǦA are
indeed gauge invariant.
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(2.43) is not modified and so the reduction of this sector is not affected by the fluxes.
Consequently we are going to restrict our attention to the gauge field sector and assume
the other results from section 2.3.4. For the fields FA and GA the self-duality condition
becomes

ǦA = ImMAB ∗ F̌B + ReMABF̌
B , (4.8)

and as in section 2.3.4 this can be obtained as the equation of motion of GA if one adds
to the action the total derivative term 1

2
FA ∧ GA. Eliminating ǦA from (4.8) and after

taking into account (4.7) one is left with the following Lagrangian for the gauge fields

L(F ) =
1

2
FA ∧GA −

1

2
(FAeA −GAm

A) ∧B2 (4.9)

=
1

2
ImMABF̌

A ∧ ∗F̌B +
1

2
ReMABF̌

A ∧ F̌B − 1

2
(FAeA + F̌AeA) ∧B2 .

After performing the field redefinitions (2.50), except for the the last one as B2 has
not been yet dualized to the axion a, one obtains the action

S =

∫
e−2φ

(
− 1

2
R ∗1 + 2dφ ∧ ∗dφ− 1

4
H3 ∧ ∗H3 − gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j

)
+

1

2

(
ImN−1

)IJ
[
dξ̃I +NIKdξK

]
∧ ∗

[
dξ̃J + N̄JLdξL

]
(4.10)

+
1

2
H3 ∧ (ξ̃AdξA − ξAdξ̃A) +

1

2
ImMABF̌

A ∧ ∗F̌B +
1

2
ReMABF̌

A ∧ F̌B

−1

2
B2 ∧ (F̌A + dV A)eA − V ,

where V is given in (4.4).

Let us make a few comments on the result obtained above. First of all one notices
that in the action (4.10) we do not have only the standard N = 2 fields described in
table 2.3. The reason for this is that the antisymmetric tensor field B2 is massive and
can not be dualized to a scalar. This is very similar to what we have already encountered
in the previous chapter in the case of type IIA theory with RR fluxes. In fact we will
see in section 4.3 that these two theories are related by mirror symmetry and thus all
the arguments presented in section 3.3 to relate the theory with a massive two-form
field to some gauge supergravity also apply here. It is worth noting that the potential
(4.4) depends on the complex structure moduli (which are now members of the vector
multiplets) and this is in agreement with mirror symmetry as in the case of type IIA with
RR fluxes the potential (3.45) was a function of the Kähler moduli. This dependence on
the complex structure moduli can be also seen from the corresponding superpotential [48]

W ∼
∫

Y3

Ω ∧ dC2 . (4.11)
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4.2 IIB with NS fluxes

Let us now come to the subject of turning on NS fluxes in type IIB theory which will
motivate part of the work in the next chapter. Due to the SL(2,R) symmetry which
rotates the two two-forms into one another (2.14), considering NS fluxes instead of RR
ones in type IIB theory does not bring in any new features. Apart from different factors
of the dilaton, the results from the previous section will be valid if one exchanges the two
fields B2 and C2.

As a consequence now the RR two-form field C2 becomes massive. For completeness
we record the final result without going through all the details of the compactification.
As in the previous section the modifications caused by the fluxes appear in the compact-
ification via

dB̂2 = dB2 + dbi ∧ ωi + m̃AαA − ẽAβ
A . (4.12)

Performing the KK reduction as before one ends up with the following effective action in
four dimensions

S
(4)
IIB =

∫
−1

2
R ∗1− gabdz

a ∧ ∗dz̄b − gijdt
i ∧ ∗dt̄j − dφ ∧ ∗dφ

−1

4
e−4φdB2 ∧ ∗dB2 −

1

2
e−2φK (dC2 − ldB2) ∧ ∗ (dC2 − ldB2)

−1

2
Ke2φdl ∧ ∗dl − 2Ke2φgij

(
dci − ldbi

)
∧ ∗

(
dcj − ldbj

)
−e

2φ

2K
g−1 ij

(
dρi −

1

2
Kiklc

kdbl
)
∧ ∗

(
dρj −

1

2
Kjmnc

mdbn
)

(4.13)

+2
(
dbi ∧ C2 + cidB2

)
∧

(
dρi −

1

2
Kijkc

jdbk
)

+
1

2
Kijkc

icjdB2 ∧ dbk

+
1

2
ReMABF̌

A ∧ F̌B +
1

2
ImMABF̌

A ∧ ∗F̌B +
1

2
ẽA

(
FA + F̌A

)
∧ C2

+
1

2
e4φ

(
l2 +

e−2φ

2K

)
(ẽ−Mm̃)A ImM−1AB

(
ẽ− M̄m̃

)
B
∗1 ,

where F̌A = FA−m̃AC2. The only reason this action looks more complicated than (4.10)
is because now C2 is massive and its dualization is not straightforward as it was before
and thus performing the field redefinitions (2.50) is more cumbersome in this case. As
later on we will need this action for the particular case when the magnetic fluxes vanish
let us see how the action simplifies under such assumptions. First of all we note that
when mA = 0 we have F̌A = FA = dAA and thus all mass terms for C2 drop out. One
can now dualize C2 and B2 to scalars as we did before and perform the field redefinitions
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(2.50). In this way one obtains for the four-dimensional action

S
(4)
IIB =

∫
−1

2
R ∗1− gabdz

a ∧ ∗dz̄b − huvDq
u ∧ ∗Dqv − VE ∗1

+
1

2
ReMABF

A ∧ FB +
1

2
ImMABF

A ∧ ∗FB , (4.14)

where the quaternionic metric huv is given by (2.52) while the potential (in the Einstein
frame) reads

VE = −1

2
e4φ

(
l2 +

e−2φ

2K

)
ẽA

[
(ImM)−1

]AB
ẽB. (4.15)

The presence of the electric fluxes has gauged some of the isometries of the hyper-scalars
as can be seen from the covariant derivatives

Da = da− ξ0ẽAV
A , Dξ̃0 = dξ̃0 + ẽAV

A , Dξ̃i = dξ̃i , DξI = dξI . (4.16)

Again as in the previous section the scalar potential depends on the complex structure
moduli. In addition the potential also depends on the RR scalar l and on the dilaton.
This dependence can be summarized in a superpotential which has the form [48]

W ∼ τ

∫
Y3

Ω ∧H3 , (4.17)

where τ denotes the complex dilaton τ = l + ie−φ introduced in section 2.1.3. One sees
that unlike the type IIA case in type IIB the superpotential for the RR and NS-NS fluxes
are very similar. If one turns on both RR and NS-NS fluxes the total superpotential can
be written as

W ∼
∫

Y3

Ω ∧ (dC2 + τdB2) =

∫
Y3

Ω ∧G3 . (4.18)

Thus the NS-NS fluxes complexify the RR ones using the complex type IIB coupling τ .

4.3 Mirror symmetry with fluxes

Let us now come to the main point of this chapter namely mirror symmetry. We have
already seen in chapter 2 that for normal Calabi–Yau compactification there is a precise
relation (2.50) and (2.53) which maps the low energy effective action of type IIA in the
one of type IIB theory. Thus the natural question which arises is whether this map is
still valid when fluxes are turned on.

We have already anticipated that in the case of RR fluxes this is true and indeed
one can easily see that modulo the identifications (2.53) the low energy actions (3.42)
and (4.10) are the same. To have a complete list of transformations we also have to add
to the relations (2.53) the fact that the fluxes on the two sides are be mapped into one
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another3

eI ↔ eA , mI ↔ mA . (4.19)

Note that in this last relation crucially depends on the extra two parameters m0 and e0
which were coming from the ten dimensional mass m and the constant dual to C3 in four
dimensions respectively.

It is also instructive to check mirror symmetry using the superpotentials which we
wrote for these cases (3.46) and (4.11). First of all one notices that in the type IIA case
the superpotential depends on the Kähler moduli while in type IIB case it depends on
the complex structure ones. Performing the integrals over the Calabi–Yau manifold using
(2.24), (2.25), (B.23), (B.26) and (B.35) it is not hard to see that

WA ∼ eIt
I −mIFI(t) ,

WB ∼ eAz
A −mAFA(z) ,

(4.20)

where tI denote the complexified Kähler moduli in the case of type IIA compactification,
zA are complex structure moduli in the type IIB case and by F(t/z) we denoted the
prepotential in type IIA and type IIB respectively. Clearly now as mirror symmetry
exchanges the Kähler and the complex structure moduli and also the prepotentials the
two superpotentials are mapped into one another provided we further assume the map
(4.19).

Let us now turn our attention to the case when NS fluxes are present. In this case
the low energy effective actions describing the two theories do not look similar anymore.
Even without a detailed study one can claim that the two theories are not the same by
applying a simple counting argument. It is easy to see that in type IIA case one has
2(h(2,1) + 1) parameters, and the same holds for type IIB. However as mirror symmetry
exchanges the odd and even cohomologies these numbers can not be the same on the
two sides. For mirror symmetry to work one would also need 2(h(1,1) + 1) on both sides
or in other words one needs even forms field strengths in the NS sector. Moreover both
potentials (3.25) and (4.15) depend on the complex structure moduli of the corresponding
compactification and again these moduli are not related by mirror symmetry.

To solve this problem we have to generalize the above procedure of turning on fluxes
in that we should allow for a different class of manifolds in the compactification and we
will see how this works in the next chapter.

3Recall that eI and mI , I = 0, . . . , h(1,1) denote the RR fluxes in type IIA theory, while eA and
mA A = 0, . . . , h(2,1) denote the RR fluxes in type IIB theory. As h(1,1)(Y ) = h(2,1)(Ỹ ) the identification
(4.19) is indeed consistent.



Chapter 5

Mirror symmetry with NS fluxes

In the last chapter we have started the discussion of mirror symmetry when fluxes are
turned on. For the case of RR fluxes we found no real obstruction to mirror symmetry,
but for the NS fluxes the situation remained unclear and we postponed its discussion for
this chapter. We will see that the ‘missing’ fluxes come from considering different type of
manifolds which are termed half-flat manifolds with SU (3) structure. After introducing
the main mathematical ideas in section 5.1 we perform the KK reduction on half-flat
manifolds and show that in this way we obtain the effective actions which were derived
in the previous chapters for type IIA and type IIB theories with NS fluxes. However
the argument we present holds only for half of the fluxes while in order to reproduce all
the NS-NS fluxes it seems that one has to further generalize the internal manifold. We
discuss this issue in section 5.3.

5.1 Manifolds with SU (3) structure

Let us start by reviewing once more why mirror symmetry did not work when NS fluxes
were turned on in the way we did in the last chapters. First of all we have shown that
the fluxes have to be harmonic forms on the internal manifold (3.8). The NS sectors of
the two type II theories are identical and in the matter part beside the dilaton one finds
only the NS two-form B2. Thus it appears that there is only one way to turn on fluxes
in the NS sector, namely for the three-form field strength H3 = dB2

H3 = mAαA − eAβ
A . (5.1)

This can be done in both type IIA and type IIB theories, but the two situations can not be
related by mirror symmetry as mirror symmetry exchanges odd and even cohomologies.
To restore it one would rather need even-form fluxes or in other words even-form field
strengths. As we do not expect mirror symmetry to mix NS-NS and RR sectors1 it is
clear that we need a generalization of the notion of flux introduced in the last chapter

1In fact we have already seen that the RR fluxes in type II theories are mirror symmetric to one
another.
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in order to find the mirror partners of the NS three-form fluxes. Thus our task for this
chapter will be to find configurations which are mirror to Calabi–Yau manifolds with NS
fluxes turned on. Note that by ‘mirror configuration’ we understand the physical picture
where type IIA and type IIB theories compactified on such mirror configurations lead to
the same physics in four dimensions.

We have just argued that the two-form field B2 can not reproduce the fluxes we need
for mirror symmetry. The other choices in the NS-NS sector are the dilaton and the
metric. As it is hard to imagine that all the flux parameters can appear from the dilaton
we are naturally lead to consider that the metric itself has to be deformed in such a way
that it reproduces the missing flux parameters. In a recent paper [50] it was proposed
that the manifold which could produce the mirror NS fluxes should not be complex, but
only almost complex and the even-form fluxes should come from the lack of integrability
of the almost complex structure. The solution to this problem was found in [16] and the
manifold considered in this case was indeed non-complex. In this section we present in
detail these ideas following [16,17].

Let us first see what choices we have for the internal manifold which can reproduce
the configuration mirror to (5.1). Throughout this argument we are going to use mirror
symmetry as a guiding principle. The crucial observation which will allow us to find a
restricted class of internal manifolds is about the amount of supersymmetry preserved
by the four-dimensional action. As we argued in the previous chapters, when fluxes
are turned on, the low energy effective action still has N = 2 supersymmetry even if
in general a supersymmetric Minkowski ground state does not exist. Thus, we would
first of all need that the manifold we are looking for preserves N = 2 supersymmetry.
As explained in section 2.3 this requirement is quite restrictive as it implies that the
manifold has SU (3) structure or equivalently that is has a globally defined nowhere-
vanishing spinor. We will see in a while that such manifolds are classified according to
their so called intrinsic torsion and this will turn out to be the ingredient which has the
potential to reproduce the mirror NS fluxes and which was missing in the simple case of
Calabi–Yau manifolds. Before we actually see how these fluxes appear if we take into
account a non-vanishing intrinsic torsion we make a short detour into the mathematical
description of these manifolds. A more general approach can be found in appendix C or
in the existing literature [68,87–91].

We start from the fact that manifolds with SU (3) structure posses a globally defined
spinor which we denote by η. This spinor is in general not covariantly constant with
respect to the Levi–Civita connection2 as it was the case for Calabi–Yau manifolds and
thus ∇η will give a measure of the deviation from a Calabi–Yau manifold. One can
nevertheless find [87,88] a new connection ∇(T ) which satisfies

∇(T )
m η = ∇mη −

1

4
κ0

mnpΓ
npη = 0 , (5.2)

where Γnp is the antisymmetrized product of gamma matrices and κ0
mnp denotes the

intrinsic contorsion tensor. (for a more detailed discussion see appendix C)

2We have implicitly assumed that we have chosen a metric g on the manifold which is invariant under
the the action of the structure group.
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The existence of a globally defined spinor is not a very intuitive picture of the mani-
folds with SU (3) structure. Fortunately there exist an alternative description in terms of
SU (3) invariant tensors which are constructed out of the the spinor η. For definiteness we
choose η to be a Majorana spinor and we use the gamma matrix conventions presented
in appendix A. We define a (real) two-form J with the components

Jmn = −iη†Γ7Γmnη , (5.3)

and a (complex) three-form Ω
Ω = Ω+ + iΩ− , (5.4)

where
Ω+

mnp = −iη†Γmnpη , Ω−
mnp = −iJm

qJn
rJp

s Ω+
qrs . (5.5)

Γm1...mp denote antisymmetrized products of p gamma matrices which are defined in
(A.12) and the indices are raised and lowered with the metric g. Due to the gamma
matrix algebra the quantities defined above enjoy a couple of nice properties similar to
the corresponding ones (complex structure and holomorphic three form) defined on a
Calabi–Yau manifold. In particular one can show that [29,39]

Jm
pJp

n = −δmn , Jm
pJn

rgpr = gmn , (5.6)

which tells us that J is an almost complex structure and the SU (3) invariant metric g
is hermitian with respect to it. Moreover, as explained in the appendix this allows us to
introduce (p, q) forms and one can further show that

Jm
qJn

r Ωqrp = −Ωmnp , (5.7)

which means that the first two indices of Ω are of the same complex type with respect
to the almost complex structure J . Due to the antisymmetry in all indices of Ω one can
in fact show that all the three indices of Ω are of the same type and it is conventional to
consider that Ω is a (3, 0) form.

Up to this point everything looks like on an ordinary Calabi–Yau manifold. The
difference comes from the fact that now the Levi–Civita connection does not have SU (3)
holonomy anymore or in other words the spinor η satisfies (5.2) for some non-vanishing
tensor κ0. This immediately implies that the quantities J and Ω are covariantly constant
with respect to the same connection with torsion namely

∇(T )
m Jnp = ∇mJnp − κ0

mn
rJrp − κ0

mp
rJnr = 0 ,

∇(T )
m Ωnmp = ∇mΩnpq − κ0

mn
rΩrpq − κ0

mp
rΩnrq − κ0

mq
rΩnpr = 0 .

(5.8)

Upon antisymmetrizing the free indices in the above expressions one obtains

dJmnp = 6T 0
[mn

rJ|r|p] ,

dΩmnpq = 12T 0
[mn

rΩ|r|pq] ,
(5.9)

where T 0
mnp = 1

2
(κ0

mnp− κ0
nmp) denotes the intrinsic torsion. So unlike on a Calabi–Yau

manifold J and Ω are no longer closed and we see again that the intrinsic (con)torsion
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is indeed the obstruction for a general manifold with SU (3) structure to be Calabi–Yau.
As J and Ω completely describe the manifold with SU (3) structure these relations can
be inverted to obtain the intrinsic torsion in terms of the exterior derivatives of J and Ω.
This was done in [87] where the classification of manifolds with SU (3) structure was given
according to the different SU (3) irreducible components in which the intrinsic torsion,
T 0 splits. Decomposing the intrinsic torsion in SU (3) representations one finds

T 0 ∈ W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 , (5.10)

with the corresponding parts of T 0 labeled by Ti with i = 1, . . . , 5 and where the repre-
sentations corresponding to the different Wi are given in table 5.1.

Component Interpretation SU(3)-representation

W1 J ∧ dΩ or Ω ∧ dJ 1⊕ 1

W2 (dΩ)2,2
0 8⊕ 8

W3 (dJ)2,1
0 + (dJ)1,2

0 6⊕ 6̄

W4 J ∧ dJ 3⊕ 3̄

W5 dΩ3,1 3⊕ 3̄

Table 5.1: The five classes of the intrinsic torsion of a space with SU (3) structure.

The second column of table 5.1, gives an interpretation of each component of T 0 in
terms of exterior derivatives of J and Ω. The superscripts refer to projecting onto a
particular (p, q)-type, while the 0 subscript refers to the irreducible SU (3) representation
with any trace part proportional to Jn removed (see appendix C). A further discussion
on the above result is presented in appendix and here we just pause to make one more
comment which will be significant later.

Such manifolds are in general not complex manifolds. The obstruction to finding a
true complex structure is given by the Nijenhuis tensor Nmn

p which is defined in (C.4).
It was found in [87] that the Nijenhuis tensor of a manifold with SU (3) structure is
determined in terms of the first two torsion classes W1 and W2. One can intuitively
understand this as follows. According to the table 5.1 the classes W1 and W2 are given
by the (3, 0) part of dJ and the (2, 2) of dΩ respectively. These components vanish
identically if the manifold is complex as in such a case the exterior derivative can only
increase by 1 either of the two degrees p or q of a (p, q) form. In other words one really
needs a non-complex space in order to have the differential of a (1, 1) form to be of (3, 0)
type or the differential of a (3, 0) form to be of (2, 2) type.

Let us now turn to see how to actually choose the internal manifold which has a
chance to reproduce the mirror NS fluxes. Asking for supersymmetry of the low-energy
effective action we were led to consider manifolds with SU (3) structure which in turn
are classified according to table 5.1. What this means is that now we have to find a
way to choose the right manifold (the right torsion classes) which can reproduce the
mirror partners of the NS fluxes (5.1). This is not straightforward and we are going to
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spend some time to understand what exactly fixes our choice. Moreover, at the moment
we lack a rigorous procedure which allows us to select in a unique way the appropriate
manifold and so we are going to present a set of motivations which point to a special
class of manifolds with SU (3) structure. They are called half-flat manifolds with SU (3)
structure and in the next sections we will show that performing the KK reduction on
such manifolds one precisely recovers the mirror of the NS fluxes (5.1).

As we have stressed before, it is the intrinsic torsion which distinguishes a general
manifold with SU (3) structure from a Calabi–Yau space. Thus the missing fluxes should
be provided by the intrinsic torsion of the particular manifold which is chosen, or equiva-
lently by the derivatives dJ and dΩ. As the usual fluxes we have seen in the last chapter
are elements of the Calabi–Yau cohomology groups Hp,q(Y ) in order to restore mirror
symmetry we need to match the SU (3) representations of the cohomology groups Hp,q(Y )
with the SU (3) representations of the intrinsic torsion. In other words this means that
that we have to keep those torsion classes which correspond to the Calabi–Yau cohomol-
ogy groups. In particular this suggests to set

T4 = T5 = 0 . (5.11)

since the corresponding H3,2(Y ) and H3,1(Y ) groups vanish on Y . On the other hand
T1,2,3 can be non-zero as the corresponding cohomologies do exist on Y . There is one
further intuitive argument which allows us to restrict the torsion classes. Note that in
general mirror symmetry exchanges the Kähler and the complex structure moduli. The
former are given by the expansion of the complexified Kähler form K = B2 + iJ on the
internal manifold while the latter by the holomorphic (3, 0) form Ω = Ω+ + iΩ−. Hence,
we can say that under mirror symmetry Ω and K are exchanged. Turning on a flux for
the NS three-form field strength H3 = dB2 means that B2 (i.e. the real part of K) on
the internal manifold is no longer closed. This in turn suggests that at least half of the
components of Ω, say Ω+, are no longer closed. Since Ω− remains closed we expect that
half of the torsion components in W1 ⊕W2 vanish. Together with (5.11) the constraints
on the torsion can be written as

dΩ− = 0,

d (J ∧ J) = 0.
(5.12)

Manifolds satisfying these conditions are known in the mathematical literature as half-
flat manifolds with SU (3) structure and in the following we are going to consider them
as the candidates to obtain the mirror NS fluxes. Note that these manifolds have a non-
vanishing component of the intrinsic torsion in W1 ⊕W2. From the above discussion it
means that that half-flat manifolds are non-complex (only almost complex) in agreement
with the suggestion made in [50]. Moreover one notices that a four-form, dΩ, has already
appeared in the NS sector and this was precisely what we were missing before in the case
of a Calabi–Yau manifold.

As we will see in the next section this can not be the end of the story as such manifolds
will only reproduce half of the missing fluxes. At the end of this chapter we will try to
find what is the appropriate generalization which reproduces all the missing fluxes.
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5.2 Type II theories on half-flat manifolds

In the last section we have presented a series of arguments which led us to the conclusion
that the half-flat manifolds represent the configuration mirror to the NS fluxes (5.1). To
see how this exactly comes about we perform in this section the KK reduction of the two
type II theories on such manifolds. However, as pointed out before the half-flat manifolds
can only reproduce half of the fluxes from (5.1) which we call electric fluxes,3 while the
origin of the other half is much harder to test.

Based on mirror symmetry we make a couple of assumptions about the topology and
moduli space of half-flat manifolds and then we apply these results in order to derive
in sections 5.2.2 and 5.2.3 the low energy effective actions of type II theories on such
spaces. For concreteness we have in mind the following picture. Consider a pair of
mirror manifolds Y and Ỹ . We define Ŷ to be the (half-flat) manifold such that type
IIA compactified on Ŷ is the same as type IIB on Ỹ when NS fluxes are turned on.
Equivalently, what we will discuss in section 5.2.3, type IIB on Ŷ is the same as type IIA
on Ỹ with NS fluxes turned on. Thus in this picture in the limit that the fluxes go to zero
the manifolds Y and Ŷ coincide. As we will shortly see this limit is a bit more delicate,
but what is important to keep in mind is that we treat Ŷ as a (small) deformation of the
manifold Y which is the true geometric mirror of Ỹ .

5.2.1 Mirror symmetry and half-flat manifolds

We have already noted that on a general manifold with SU (3) structure there exist a
four-form, dΩ, which can play the role of the NS four-form field strength which we need to
restore mirror symmetry. In order to find the h(1,1) fluxes required by mirror symmetry
we have to expand this four-form in a similar way we expanded the four-form fluxes.
Consequently we set

dΩ = eiω̃
i , i = 1, . . . , h(1,1)(Y ) , (5.13)

where ω̃i is a basis for (2, 2) forms on Ŷ which in the limit of small torsion should
locally coincide with the basis for harmonic (2, 2) forms on Y , while ei are constants
parameterizing the flux. One can also introduce the dual basis ωi, i = 1, . . . , h(1,1)(Y )
for the (1, 1) forms and a basis for the three-forms (αA, β

A) A = 0, . . . , h(2,1)(Y ). The
key point here, imposed by mirror symmetry, is that these forms should obey the same
relations as on the undeformed Calabi–Yau manifold (2.24) (2.25) and (B.23). Moreover,
mirror symmetry further restricts the manifold Ŷ , in that its moduli space of metrics have
to coincide with the moduli space of the original Calabi–Yau manifold Y . In particular
we should be able to expand J and Ω in the moduli in the same way as on a Calabi–Yau

3Formally by electric fluxes we mean the flux parameters eA in (5.1). We stress once more that
the name comes only from the four dimensional interpretation as these parameters naturally appear as
electric charges. However this is a basis dependent notion as going to the dual magnetic basis for the
gauge fields the electric and magnetic charges are also interchanged.
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space (B.21) and (B.35)

Ω = zA αA −FA β
A , A = 0, 1, . . . , h(2,1)(Y ) ,

J = vi ωi , i = 1, . . . , h(1,1)(Y ) ,
(5.14)

where zA = (1, za) with a = 1, . . . , h(2,1)(Y ) and the za are the scalar fields corresponding
to the deformations of the complex structure (FA is the corresponding prepotential),
while the vi are the (real) scalar fields corresponding to the Kähler deformations. In
order to write (5.14) we have adopted the symplectic basis which is appropriate for the
moduli problem where the norm of Ω is not fixed, but one can instead choose one of
the z’s (in the case above z0) to be constant. Clearly if we impose (5.13) and keep the
expansion (5.14) the forms (αA, β

A) can not be all closed (harmonic). Inserting (5.14)
into (5.13), we have

dΩ = zAdαA −FAdβA = eiω̃
i . (5.15)

As the fluxes should not depend on the specific point in the moduli space we are looking
at this is only possible if we have

dα0 = ei ω̃
i , dαa = dβA = 0 , (5.16)

where α0 is singled out since it is the only direction in Ω which is independent of za.4

Furthermore, inserting (5.16) into (2.24) and integrating by parts gives

ei =

∫
ωi ∧ dα0 = −

∫
dωi ∧ α0 . (5.17)

Thus, consistency requires
dωi = eiβ

0 , dω̃i = 0 , (5.18)

where the second equation follows from (5.16).5

As we can easily see from the above equations the forms ωi are not harmonic as they
are not closed anymore. The same is true for the basis (αA, β

A) as they are not coclosed
anymore. To see this note that the Hodge star (B.40) on any of these forms necessarily
involves α0 which obeys (5.16).

One can nevertheless construct harmonic forms out of the ωi as their derivative is
proportional to the same three-form β0. Suppose for instance that e1 is non-zero then
the linear combinations

ω′i = ωi −
ei

e1
ω1 , i 6= 1 , (5.19)

are harmonic in that they satisfy

dω′i = d†ω′i = 0 , (5.20)

4Of course this corresponds to a specific choice of the symplectic basis of H3. It is the same choice
which is conventionally used in establishing the mirror map without fluxes.

5Strictly speaking also dωi = eiβ
0 + aAαA + baβa for some arbitrary coefficients aA, ba solves (5.17).

However by a similar argument as presented for the exterior derivative of ωi one can see that any non-
vanishing such coefficient produces a nonzero derivative of αa or/and βA contradicting (5.16). From this
one concludes that the only solution of (5.17) together with (5.16) is (5.18).
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where we used d†ω′i = ∗d∗ω′i ∼ ∗dω̃′i. Thus, there are still at least h(1,1)(Y )−1 harmonic
forms ω′i on Ŷ . The same argument can be repeated for H3 where one finds 2h(2,1)

harmonic forms or in other words the dimension of H3 has changed by two and we have
together

h(2)(Ŷ ) = h(1,1)(Y )− 1 , h(3)(Ŷ ) = h(3)(Y )− 2 . (5.21)

Physically this can be understood from the fact that some of the scalar fields gain a
mass proportional to the flux parameters and no longer appear as zero modes of the
compactification. Similarly, from mirror symmetry we do not expect the occurrence of
new zero modes on Ŷ as these would correspond to additional new massless fields in the
effective action. Thus the new manifold Ŷ is topologically different from Y and so there
is no continuous limit to pass from Y to Ŷ which is the analog of the flux quantization
condition we have discussed in chapter 3. Recall that in order to compute the low energy
effective action we needed that the fluxes are small and we overcame this difficulty by
considering the large volume limit, case in which the fluxes can be regarded as continuous
parameters and can be chosen arbitrary small. In the case of the half-flat manifold this is
not obviously possible as the manifolds with and without flux are topologically different.
Mirror symmetry tells us that the right limit should be the large complex structure and
we will assume that in this case the torsion can be made locally small and the two
manifolds are locally the same.

Let us summarize the results obtained so far. Requiring that the half-flat manifold
Ŷ is in fact mirror to a Calabi–Yau Ỹ when fluxes for the NS three-form field strength
are turned on we have conjectured the existence of a set of forms on Ŷ satisfying the
conditions (5.16) and (5.18) which essentially encode information about its topology.
Moreover assuming the same moduli expansions we immediately obtain

dJ = vieiβ
0 . (5.22)

Using the standard SU (3) relation J∧Ω = 0 which implies that ωi∧αA = ωi∧βA = 0 for
all A and i one finds J ∧dJ = 0 proving in this way the consistency with the half-flatness
assumption. 6 Furthermore, since dJ and dΩ completely determine the intrinsic torsion
T 0, we see that all the components of T 0 are given in terms of the constants ei without
the need for any additional information.

5.2.2 Type IIA on a half-flat manifold

Having discussed the topology of the half-flat manifolds we can turn to study compact-
ifications on such spaces and we focus at the beginning on the type IIA case. Thus we

6It would be interesting to calculate the moduli space of half-flat metrics on Ŷ directly and see that
it agreed with, or at least had a subspace, of the form given by (5.14) together with (5.16) and (5.18).
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assume a background metric of diagonal form7

Ĝ =

 ηµν 0

0 gŶ
mn

 , (5.24)

where gŶ is the SU (3) invariant metric on the half-flat manifold. As far as the matter
fields are concerned we consider turning on a very specific flux for the NS three-form field
H3

(H3)
int = e0β

0 . (5.25)

The reason for this is that it appears that the half-flat manifolds can only reproduce
h(1,1) flux parameters ei (5.13), but on the other hand in order to recover the mirror of
all electric fluxes (5.1) we need one more parameter. Thus the claim is that e0 in (5.25)
precisely plays the role of this last flux parameter. The reason for picking such a specific
flux is that in the final result this additional parameter e0 combines in the right way with
the other fluxes ei coming from (5.13). Beside (5.24) and (5.25) all other fields are taken
to be trivial in the background.

There is one more thing we need to discuss before starting the computation of the ef-
fective action: the light modes in four dimensions. For this we use again mirror symmetry
as guiding principle. This requires that the light spectrum obtained in usual Calabi–Yau
compactifications is not modified. We also know from section 4.2 that some of the fields
acquire masses proportional to the fluxes and thus we should allow for fields which have
masses of order (flux)2. Moreover one can immediately notice that the Laplace operator
on the forms discussed in the last section is precisely of order (flux)2 and so it is legitimate
to expand the matter fields in these forms. Thus we are going to perform a non-standard
KK compactification where the forms in which we expand are not harmonic anymore,
but satisfy

dα0 = eiω̃
i , dαa = dβA = 0 , dωi = eiβ

0 , dω̃i = 0 . (5.26)

However we continue to demand that these forms have identical intersection numbers as
on the Calabi–Yau or in other words obey unmodified (2.24) and (2.25).

Formally, all what this means is that we assume the same field expansions as in (2.31)
but now we take into account the additional relations (5.25) and also (5.26). Because of
the former equation we again start from the formulation of type IIA which is appropriate
for turning on NS fluxes (3.11). Using the above relations it is easy to see that the
expansions of the field strengths become

Ĥ3 = dB2 + dbiωi + (eib
i + e0)β

0 , (5.27)

F̂4 = (dC3 − A0 ∧ dB2) + (dAi − A0dbi) ∧ ωi +DξAαA −Dξ̃Aβ
A + ξ0eiω̃

i ,

7Strictly speaking this background is not a solution of the ten-dimensional equations of motion because
the half-flat manifolds are not Ricci flat. However in the small torsion limit one can write the Riemann
tensor of the manifold Ŷ

R̂ = RCY + O((T 0)2) . (5.23)

In this way we can think of the terms of order (T 0)2 as being a small correction to the Einstein equations
as in (3.9).
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where the covariant derivatives are given by

Dξ̃0 = dξ̃0 + ei(A
i + biA0) + e0A

0, DξA = dξA, Dξ̃a = dξ̃a. (5.28)

This formula is one of the major consequences of compactifying on Ŷ (in particular of
expanding the ten-dimensional fields in forms which are not harmonic) as one of the
scalars, ξ̃0, becomes charged.

From here on the compactification proceeds as in the other cases when we have turned
on fluxes by inserting (5.27) together with (2.31) back into the action (2.2) and performing
the integrals over Ŷ using (2.24), (2.25), (2.34) and (2.35). Again as in the other cases we
only outline the modifications which appear in comparison to the usual compactification
presented in section (2.3.3).

Let us first concentrate on the structure of the action leaving the computation of the
scalar potential for the end of this section. Then the only new features we encounter
come from the topological term

1

2

∫
Ŷ

Ĥ3 ∧ Ĉ3 ∧ dĈ3 =
ξ0

2
dB2 ∧ Aiei +

1

2
dB2 ∧

(
ξ0(dξ̃0 + eiA

i) + ξadξ̃a − ξ̃AdξA
)

+
ξ0

2
eidb

i ∧ C3 +
1

2
dbi ∧ Aj ∧ dAkKijk (5.29)

−ξ
0

2
(eib

i + e0)dC3 −
1

2
(eib

i + e0) ∧ C3 ∧ dξ0 ,

where Kijk is defined in (2.34). Before we attempt to write the form of the four-
dimensional effective action we should again perform the dualization of the three-form.
Using the results in appendix D.2.2 we obtain for dual action8

Sdual = −(ξ0)2

2K
(eib

i + e0)
2 − ξ0 (eib

i + e0)A
0 ∧ dB2 . (5.30)

One further dualizes B2 to a scalar field denoted by a and taking into account the Green-
Schwarz type interactions (5.29) and (5.30) one obtains that this scalar becomes charged.
Redefining the gauge fields as Ai → Ai − biA0 and after going to the Einstein frame one
obtains the effective action to be

SIIA =

∫ [
− 1

2
R ∗1− gijdt

i ∧ ∗dt̄j − huvDq
u ∧ ∗Dqv

+
1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J − VIIA ∗1
]
, (5.31)

where the gauge coupling matrix NIJ and the metrics gij, huv are the same as in the
case discussed in section (2.3.3). Among the covariant derivatives of the hyper-multiplet
scalars Dqu the only non-trivial ones are

Da = da+ ξ0eIA
I ; Dξ̃0 = dξ̃0 + eIA

I , (5.32)

8Note that after performing the dualization we have again set to zero the constant to which C3 is
dual.
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where eI , I = 0, . . . h(1,1) is a collective notation for e0 and ei, i = 1, . . . h(1,1).

Before discussing the potential let us note that the action (5.31) already has the form
expected from mirror symmetry with the action derived in (4.14). In particular the forms
α0 and β0 in (5.26) single out the two scalars ξ0, ξ̃0 from the expansion of Ĉ3. ξ

0 maps
under mirror symmetry (2.50) to the RR scalar l which is already present in the D = 10
type IIB theory while ξ̃0 maps to the charged RR scalar in type IIB. Moreover, using
these identifications one observes that the gauging (5.32) is precisely what one obtains in
the type IIB case with NS electric fluxes turned on (4.16). Finally we see that the extra
flux parameter e0 does indeed combine with the ei defined in (5.13) justifying our choice
for this flux.

What we are now left to check in order to prove that the action (5.31) is the mirror of
(4.14) is that that the two scalar potentials also agree. In the case of type IIA compactified
on Ŷ one can identify four distinct contributions to the potential: from the kinetic terms
of B̂2 and Ĉ3, from the dualization of C3 in 4 dimensions and from the Ricci scalar of
Ŷ . Let us study these contributions one by one. We go directly to the four-dimensional
Einstein frame which amounts to multiplying every term in the potential by a factor e4φ

coming from the rescaling of
√
−g, φ being the four-dimensional dilaton which is related

to the ten-dimensional dilaton φ̂ by e−2φ = e−2φ̂K.

Using (5.27) we see that the kinetic term of B̂2 in (2.2) gives the following contribution
to the potential

V1 =
e2φ

4K
(eib

i + e0)
2

∫
Ŷ

β0 ∧ ∗β0 = −e
−2φ

4K
(eib

i + e0)
2
[
(ImM)−1

]00
, (5.33)

where the integral over Ŷ was performed using (2.35). Similarly, the kinetic term of Ĉ3

produces the following piece in the potential

V2 = e4φ (ξ0)2

8K
eiejg

ij , (5.34)

where gij arises after integrating over Ŷ using (B.28). Furthermore, (5.30) also produces
a term in the potential

V3 = e4φ (ξ0)2

2K
(eib

i + e0)
2 . (5.35)

The last contribution to the potential is due to the fact that the half-flat manifolds
are no longer Ricci flat. The computation of the Ricci scalar is quite involved and so we
displayed it in the appendix C.2. Here we just recall the final result for the Ricci scalar

Rhf = −1

8
eiejg

ij
[
(ImM)−1

]00
. (5.36)

Taking into account the factor e−2φ̂

2
which multiplies the Ricci scalar in the ten-dimensional

action (2.2) and the factor e4φ coming from the four-dimensional Weyl rescaling one ob-
tains the contribution to the potential coming from the gravity sector to be

Vg = − e2φ

16K
eiejg

ij
[
(ImM)−1

]00
. (5.37)
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Combining (5.33), (5.34), (5.35) and (5.37) after using (B.33) we can finally write the
entire potential which appears in the compactification of type IIA supergravity on Ŷ

VIIA = −e
4φ

2

(
(ξ0)2 − e−2φ

2

[
(ImM)−1

]00
)
eIeJ

[
(ImN )−1

]IJ
. (5.38)

In order to compare this potential to the one obtained in type IIB case (4.15) we
should first see how the formula (5.38) changes under the mirror map. First, from (2.50)
we learn that ξ0 corresponds to the ten dimensional scalar of type IIB theory, l. Then
from mirror symmetry know that the gauge coupling matrices M and N are mapped
into one another (2.53). In particular this means that9

[
(ImMA)−1

]00 ↔
[
(ImNB)−1

]00
= − 1

KB

. (5.39)

where we used the expression for (Im N )−1 from (B.33). With this observation it can
be easily seen that the type IIA potential (5.38) is precisely mapped into the type IIB
one (4.15) provided one identifies the electric flux parameters eI ↔ ẽA and the four-
dimensional dilatons on the two sides. In this way we established that the low energy
effective action obtained by compactifying type IIA supergravity on a half-flat manifold
coincides with the one obtained by turning on electric NS fluxes in the Calabi–Yau
compactification of type IIB supergravity.

It is also interesting to write a superpotential for this case as we did in all other
situations. The natural guess is

W ∼
∫

Ŷ

K ∧
(
dC3 + ie−φdΩ+

)
, (5.40)

where K is the complexified Kähler form K = B2 + iJ . As in the other case when
we had NS fluxes in type IIA theory (3.26) one notices again the presence of the RR
three-form C3 in the superpotential. This term is needed now in order to reproduce the
ξ0 term in the potential (5.38). For consistency, one can again explicitly check that this
superpotential is precisely the mirror of (4.17) when the magnetic fluxes are set to zero.

5.2.3 Type IIB on a half-flat manifold

At the beginning of section 5.2 we have defined Ŷ to be the manifold which could re-
produce the mirror NS fluxes. In the previous section we have already seen that type
IIA compactified on half-flat manifolds with SU (3) structure is mirror to type IIB with
NS electric fluxes turned on and thus we can say that Ŷ is such a half-flat manifold.
There is one immediate check which one can imagine, namely that the above definition
of Ŷ should not depend on whether we consider type IIA or type IIB theory. More
specific using the same Ŷ one should be able to also reproduce the NS (electric) fluxes

9In order to avoid confusions we have added the label A/B to specify the fact that the corresponding
quantity appears in type IIA/IIB theory.
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in type IIA theory. This is what we want to do in this section namely to show that type
IIB compactified on a half-flat manifold leads to the same effective action as type IIA
compactified on a Calabi–Yau manifold with NS fluxes turned on.

We take the compactification setup to be the same as in the last section (5.24) and
again perform the field expansion in the forms (5.26). We again turn on the NS three-
form flux along β0 which once more will turn out to provide the last flux parameter
needed in order to restore mirror symmetry when all electric NS fluxes are turned on.
Thus considering the usual field expansions (2.41) one derives the following expressions
for the field strengths Ĥ3, F̂3 and F̂5

Ĥ3 = dB2 + dbiωi + (eib
i + e0)β

0 ,

F̂3 = (dC2 − ldB2) + (dci − ldbi) ∧ ωi + ei(c
i − lbi)β0 − le0β

0 , (5.41)

F̂5 = (dDi − dbi ∧ C2 − cidB2) ∧ ωi + (Dρi −Kijkc
jdbk) ∧ ω̃i + FA ∧ αA − ǦA ∧ βA ,

where we have defined

Dρi = dρi − eiV
0 ,

FA = dV A , GA = dUA , (5.42)

Ǧ0 = G0 − ei(D
i − biC2) + e0C2 ; Ǧa = Ga .

The topological term is also going to be modified because of the non-standard algebra
of the forms we consider (5.16) and (5.18). Using these relations and the field expansions
(2.41) one derives

−1

2

∫
Â4 ∧ dB̂2 ∧ dĈ2 = −1

2
KijkD

i ∧ dbj ∧ dck − 1

2
ρi −

(
dB2 ∧ dci + dbi ∧ dC2

)
+

1

2
eiV

0 ∧
(
cidB2 − bidC2

)
− 1

2
e0V

0 ∧ dC2 . (5.43)

From this point on the derivation of the low energy effective action proceeds as in
section 2.3.4 or 4.1 with the only difference that the fields ρi appear with a non-trivial
covariant derivative (5.42). In particular one has to impose the self-duality condition on
F̂5. Due to the fact that the forms ωi, ω̃

i, αA, β
A are taken to obey the same relations as

on a normal Calabi–Yau manifold (B.29), (B.40), (B.42) for the four-dimensional fields
this condition reduces to a form which is very similar to (2.43)

ǦA = ImMAB ∗ FB + ReMABF
B ,

Dρi −Kijkc
jdbk = 4Kgij ∗ (dDj − dbj ∧ C2 − cjdB2) . (5.44)

Again these constraints can be obtained as equations of motion for the fields dDi and
GA after adding the Lagrange multipliers (2.46). Eliminating now these redundant fields,
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after going to the Einstein frame and performing the mirror map (2.50) one obtains the
following effective action

S =

∫ [
− 1

2
R∗1− gabdz

a ∧ ∗dz̄b − h̃uvDq
u ∧ ∗Dqv − VIIB ∗ 1

+
1

2
ImMABF

A ∧ ∗FB +
1

2
ReMABF

A ∧ FB
]
, (5.45)

where the gauge couplings and the sigma model metrics are exactly as in the massless
compactification presented in section 2.3.4 The non-trivial covariant derivatives are

Dξ̃I = dξ̃I − eIV
0 ; Da = da− eIV

0ξI , (5.46)

while all the other fields remain neutral.

The potential appearing in (5.45) is straightforward to compute. Using the fact that
it is generated by the terms in the field strengths (5.41) which reside completely in the
internal manifold one writes

VIIB = −e
−2φ

4K
(eib

i+e0)
2
[
(ImM)−1

]00− 1

2

[
ei(c

i− lbi)− le0
]2 [

(ImM)−1
]00

+Vg , (5.47)

where Vg denotes again the potential term which arises from the Einstein-Hilbert term
due to the fact that the compactification manifold is not Ricci flat (5.36). Using (5.37)
and (B.33) one can write the potential in the following form[

e2φ

4
eIeJ

(
ImN−1

)IJ − e4φ

2
(eIξ

I)2

] [
(ImM)−1

]00
. (5.48)

Once again we see that the theory obtained in (5.45), (5.46) and (5.47) is the same
as the one obtained by compactifying the type IIA theory with non-trivial electric NS
fluxes turned on from section 3.2. In particular the gaugings (5.46) have the same form
with the ones found in (3.15) and (3.22) if one sets the magnetic fluxes pA = 0. Moreover
it can be seen that in this limit also the potentials (5.47) and (3.20) coincide when one
takes into account that the gauge coupling matrices are exchanged N ↔ M and uses
the mirror version of (5.39)

The final thing to do is to write again a superpotential which corresponds to this case

W ∼
∫

Ŷ

(
F3 + ie−φdK

)
∧ Ω , (5.49)

where K = B2 + iJ and again the term with F3 is needed in order to reproduce the ξ
dependence in the potential. Needless to say it can be checked that (5.49) is indeed the
mirror of (3.26).

To summarize the results obtained in this section, we have seen that the low-energy
effective action of type IIA theory compactified on Ŷ is precisely the mirror of the effective
action obtained in section 4.2 for type IIB theory compactified on Ỹ in the presence of
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NS electric fluxes. Moreover we have shown that also the reverse situation holds namely
the low energy effective action of type IIB compactified on Ŷ coincides with the one
obtained for type IIA compactified on Y with NS electric fluxes turned on. This is our
final argument that the half-flat manifold Ŷ is the right compactification manifold for
obtaining the mirror partners of the NS electric fluxes (5.1). In particular the interplay
between the gravity and the matter sector which resulted in the potentials (5.38) and
(5.47) provided a highly nontrivial check of this assumption.

5.3 Magnetic fluxes

The success of the last section where we obtained the mirror configuration of the Calabi–
Yau compactifications with NS fluxes is partly faded by the fact that we were able to
recover only half of the wanted fluxes. We have denoted these fluxes as electric ones
because in the low energy theory they appear as electric charges for some of the fields.
The story of the second half of the fluxes in (5.1) is far more involved and we will try in
this section to present a couple of ideas which lead to some generalization of the notion
of half-flat manifolds.

First let us discuss the obstacles one encounters when trying to reproduce the mag-
netic fluxes. Naively one could say that looking at spaces which satisfy dΩ− = 0 reduces
in an arbitrary way the number of flux parameters by a factor of 2. This statement is
not obviously wrong and we will even try to justify later that indeed this is the correct
generalization. However from the point of view of the last section choosing a manifold
for which dΩ is not real complicates things tremendously. The reason for this is that in
such cases we no longer have a simple interpretation in terms of the basis (αA, β

A) as in
(5.16). Trying to naively apply the argument of the last section that the fluxes should
not depend on the specific point in the moduli space would mean to incorporate the full
dΩ in the derivative of α0. However, this is not possible since α0 is a real form while the
above identification would mean that its derivative is complex. Thus we find ourselves
right from the beginning in the situation that we can not verify our conjecture because
there is no easy way to compute the low energy effective action. One can do a little better
than that in the sense that there are other quantities like the superpotentials which can
be computed without specifying anything about the three-form basis (αA, β

A). We will
be more specific at the end of this section where we will try to guess the properties of
the manifold which can reproduce both electric and magnetic fluxes.

In order to find the proper generalization one can also try to use a ‘bottom-up’
approach. We know how the low energy-effective action when both electric and magnetic
NS fluxes are turned on looks like and so one can ask what is the right compactification
manifold which can reproduce this effective action. In particular, one can derive in this
way the specific algebra which the basis forms should satisfy. As we will see in a while
one again runs immediately into problems. Let us consider for definiteness that we want
to reproduce the type IIB theory with all NS fluxes turned on10. We have already given

10Similar arguments though a bit more technically involved also apply for the case of type IIA with
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in section 4.2 the low energy effective action one obtains when all NS fluxes are turned on
and let us see what problems we encounter when trying to reproduce this theory. From
the action (4.13) one immediately notices that the RR two-form C2 becomes massive. We
would thus need that the same thing happens in type IIA on some appropriately chosen
manifold with SU (3) structure. However type IIA theory compactified on a Calabi–Yau
manifold features no RR two-form and if we insist to keep the same light spectrum as
we had in usual Calabi–Yau compactifications there is no way one can obtain a massive
two form in the RR sector. We can nevertheless try to consider field expansions in some
yet unknown one-form, but it is hard to see how one can restore mirror symmetry in this
case so we will drop the idea right from the beginning. The most probable thing which
can happen is that we do not work in the right basis. We have already seen in section
3.3.2 that a massive two form in four dimensions can have different interpretations. One
can think that the right picture which we have to reproduce is not the one where the
massive two form is present explicitly, but one of the dual pictures. The one where the
massive two form is traded for a massive vector in four dimensions is still not easy to
find on the type IIA side. The reason is that in this case there is an extra (redundant)
gauge field and moreover the gauge couplings are modified according to (3.66). First of
all there is no way to obtain extra fields unless one considers different forms to expand in.
This would again mean that mirror symmetry is going to be difficult to restore. Second
of all there is no reason that the previous gauge couplings are modified once we introduce
some extra form to expand in. However, from (3.66) the gauge coupling matrix seem to
be modified.

The last description we gave for a massive two-form in section 3.3.2 was one where
the massive two-form is dualized to a scalar which is both electrically and magnetically
charged. We do not want to go into the details of this last possibility as we do not
understand completely how to obtain this situation on the mirror type IIA side. We only
remark that this is not improbable as there exist a formulation of type IIA theory where
both the usual fields and their Poincare duals are present [61, 92, 93]. As in type IIB, in
this other formulation of type IIA theory one has to impose a duality relation between
the fields in order to obtain the correct equations of motion.

There is one more aspect which is worth presenting regarding the magnetic fluxes.
In the case of the type IIB theory compactified with NS fluxes turned on it is pure
convention to call some of the fluxes electric and some other magnetic. What we really
mean is that the two situations when we have only electric and only magnetic fluxes are
perfectly similar. From the effective action (4.13) this fact is not so clear as it looks like
the field C2 is still massive when the electric fluxes are set to zero while in the case that
the magnetic fluxes vanish C2 is clearly massless. However this is only an artifact of the
vector field basis we have chosen. In other words we are trying to describe magnetic
charges using electric vector fields. Going to the dual picture where the gauge fields are
replaced with their magnetic duals one can easily check that C2 is not anymore massive
and the whole action can be written as in (4.14). However now the gauge couplings have

NS fluxes.
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to be modified according to

I −→
(
I +RI−1R

)−1
, R −→

(
I +RI−1R

)−1RI−1 , (5.50)

where by R and I we have denoted the real and imaginary part of the matrix M respec-
tively. In order to further map this action to a mirror IIA version and in particular in
order to have the kinetic terms for the hyper-scalars in the standard quaternionic form
(2.52) one needs to exchange the scalar fields ξ and ξ̃ in the definition of the mirror map
(2.50). This means that on the type IIA side the scalar which plays the role of the ten di-
mensional type IIB scalar will be ξ̃0 in the case when we want to reproduce the magnetic
fluxes rather than ξ0 which we found in the previous sections. In order to obtain such an
effective action we would now need that in the relations (5.16) and (5.18) one exchanges
α0 with β0. From this kind of picture we gave here one notices an immediate problem
when one tries to turn on both electric and magnetic fluxes: there are two scalars ξ0 and
ξ̃0 which have to play the role of the ten dimensional type IIB scalar at the same time.
It becomes again clear that one has to find a less naive way to turn on both electric
and magnetic fluxes. It is somehow curious that the internal geometry knows already
about these problems as we can not make both dα0 and dβ0 non-vanishing and assuming
consistency with Calabi–Yau intersection numbers without violating ddωi = 0.

Let us now turn to analyze this situation from the superpotentials perspective. Again
we try to reproduce type IIB with NS fluxes. For this case the superpotential was given
in (4.17). We argued that in the mirror picture one needs even form fluxes and indeed
one can see from (5.40) that the four-form dΩ+ enters the superpotential. The claim is
now that what one further needs is a two form flux Fmag

2 which should have an expansion
like

Fmag
2 = miωi , (5.51)

and the corresponding superpotential would be

W ∼
∫

Ŷ

Fmag
2 ∧K ∧K . (5.52)

The reason to write this is just analogy with what happens in type IIB theory where
the NS fluxes complexify the RR ones G3 = dC2 + τH3 (4.18). So we would now need a
two-form which is constructed out of defining forms of a manifold with SU (3) structure
J and Ω. A natural candidate is then Fmag

2 = d†Ω+ ∼ ∗dΩ−. It is not surprising that
with this choice one can partly reproduce the superpotential (4.17). The difficult part
now is to obtain the correct τ dependence in this superpotential. Once more we should
stress that with the assumption that the magnetic fluxes come from d†Ω+ it is difficult to
translate this condition in some algebra of the basis forms and thus it is almost impossible
to attempt to compute the low energy effective action.



Chapter 6

Conclusions

In this work we have studied fluxes in type II string compactifications on Calabi–Yau
threefolds. In chapter 3 we focused on type IIA theory and we described how to obtain
the low energy effective action in such compactifications with fluxes. The first important
result was to show that the bosonic action when NS fluxes are turned on is a particular
case is an N = 2 gauged supergravity in four dimensions. Thus the fluxes do not break
explicitly supersymmetry, but instead turn a normal supergravity into a gauged/massive
one where the flux parameters play the role of masses and charges. The second important
result in this chapter was obtained for case of RR fluxes when the compactification led
to a massive two-form in four dimensions (3.42). The interesting feature is that this
two-form couples to both electric and magnetic field strengths in such a way that the
symplectic invariance of N = 2 supergravities is still maintained (3.49). Relying on the
results for the NS fluxes we conclude that the action we obtained when RR fluxes are
turned on is a new type of N = 2 gauged supergravity which in contrast to the known
ones is still symplectic invariant. The first essential fact for this symmetry to be preserved
is that the isometry which is gauged in this case corresponds to a two-form which can
naturally couple to the field strengths of the vector fields in comparison to the scalars
which can only couple to the gauge potentials. Thus, the dualization of the two-form
in four dimensions leads as we have seen in section 3.3.2 to an explicit breaking of the
symplectic invariance. The second issue which is crucial for preserving the symplectic
invariance is the fact that in addition to the 2h(1,1) RR fluxes in the four-dimensional
theory one finds two more parameters: m, the mass parameter of the starting massive
type IIA theory and e0, the constant which is the dual of the three-form C3 in four
dimensions. Recall that in type IIA compactified on a Calabi–Yau threefold one finds
h(1,1) vector multiplets and the symplectic group in this case is Sp(2(h(1,1) + 1), where
the extra “+1” comes from the graviphoton. A theory with charged particles which
is invariant under this symmetry must have h(1,1) + 1 electric and h(1,1) + 1 magnetic
charges which transform in the fundamental representation of Sp(2(h(1,1) + 1) and the
two parameters discussed above together with the ordinary 2h(1,1) RR fluxes precisely
behave in this way.

In chapter 4 we turned our attention to type IIB theory with fluxes having in mind
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the relation to type IIA via mirror symmetry. For the case of RR fluxes this was straight-
forward to check at the level of low energy effective actions. However we stress again the
important role played by the additional parameters m and e0 discussed above as together
with the usual 2h(1,1) RR fluxes they are the mirror of the 2 (h(2,1)+1) RR fluxes from
type IIB theory. For the case of NS-NS fluxes the situation is more complicated as one
has on both sides three-form fluxes which can not be mapped into one another by mirror
symmetry. We have proposed in chapter 5 a solution to this problem by choosing as com-
pactification manifold a different space than a Calabi–Yau threefold. In order to have the
right amount of supersymmetry in four dimensions, namely N = 2, these manifolds must
have first of all an SU (3) structure. SU (3) structures have been classified according to
their intrinsic torsion (see table 5.1) and as Calabi–Yau manifolds are torsion free this
seems to be the right generalization of Calabi–Yau manifolds which can reproduce the
mirror of the NS fluxes. Guided by mirror symmetry we have argued that the intrinsic
torsion has to obey some further constraints and for the case at hand we have found that
in addition to the SU (3) structure the manifold has to satisfy the half-flat conditions
d(J ∧ J) = dΩ− = 0. Using again mirror symmetry we find that these manifolds have
smaller cohomology groups (5.21), but the moduli space of metrics on such spaces should
be the same as the moduli space of ordinary Calabi–Yau manifolds. With these assump-
tions we have performed the KK reduction of type IIA/B theories and showed that the
low energy effective action obtained in this way precisely coincides with the one of type
IIB/A when electric NS fluxes are turned on. For the magnetic fluxes a generalization of
the half-flat manifolds is required in that d†Ω+ ∼ dΩ− 6= 0. However an explicit test of
this proposal is not known at the moment.

Another important aspect of turning on fluxes is that a potential is generated which
partially lifts the vacuum degeneracy. We have briefly pointed out that for type IIA with
NS-NS fluxes the complex structure moduli are lifted while in type IIA with RR fluxes
the potential depends on the Kähler moduli. In type IIB both RR and NS-NS fluxes lift
only the complex structure moduli. These results can be easily seen by working with the
superpotentials (3.26), (3.46), (4.17) and (4.11).

A couple of open questions still remain. First it is interesting to continue the analysis
in order to obtain the mirror of the magnetic NS fluxes. Furthermore many of the results
of chapter 5 are not satisfactory as they were imposed using mirror symmetry as an
argument. Thus it would be interesting to have an independent mathematical derivation
of the topology and moduli space of half-flat manifolds. Another important aspect is to
use the analysis in this work in some phenomenological interesting models which have
at most N = 1 supersymmetry and feature non-Abelian gauge groups. In such cases a
more detailed study of the moduli stabilization problem has to be done and in particular
to find a way to fix both the complex structure and the Kähler moduli at the same time.



Appendix A

Conventions and notations

Throughout this thesis we use the following conventions.

• The space-time metric has signature (−,+,+, . . .).

• The components of a differential p-form are defined as follows

Ap =
1

p!
Aµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (A.1)

• A hat on a p-form, e.g. Âp denotes differential forms in d = 10. p-forms without
the hat are four-dimensional quantities.

• The Hodge operation ∗ is defined in such a way that

dAp ∧ ∗dAp =

√
−g

(p+ 1)!
(dA)µ1...µp+1(dA)µ1...µp+1ddx , (A.2)

reproduces the correct kinetic term for a p-form in d space-time dimensions. In
particular we denote ∗1 =

√
−g ddx.

• After compactification the Hodge operation splits into a Hodge-star on the four-
dimensional space and another one acting on the internal Calabi–Yau space. For
example, in the expansion of a p form one encounters terms like Âp = · · ·+Ap−kωk+
· · · , where ωk is some harmonic k form on the internal space. The Hodge dual is
given by

∗Âp = · · ·+ (−1)k(p−k) ∗ Ap−k ∗ ωk + · · · , (A.3)

where the first ∗ on the RHS acts only in space-time while the second acts only in
the internal space. The (−1)k(p−k) assures that the kinetic term of Âp produces∫

Y3

Âp ∧ ∗Âp = · · ·+ Ap−k ∧ ∗Ap−k

∫
Y3

ωk ∧ ∗ωk + · · · . (A.4)
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• The indices i, j, k, . . . label harmonic (1, 1) and (2, 2) forms on the Calabi–Yau
threefold and run from 1 to h(1,1); the indices I, J, . . . label the vector fields in type
IIA compactifications and include the zero I = 0, 1, . . . , h(1,1). The indices a, b . . .
run from 1 to h(2,1) and label (2, 1)-forms on Y3. The indices A, B . . . include
the zero and label all three-forms including the (3, 0)-form, i.e. A = 0, 1, . . . , h(2,1).
A,B, . . . also label vector fields in type IIB compactifications.

• Indices m, n, p, . . . = 1, . . . , 6 label real internal coordinates. When we use complex
coordinates we label them with α, β = 1, 2, 3, ᾱ, β̄ = 1, 2, 3.

• The Riemann curvature tensor is defined as

Rmnp
q = ∂mφnp

q − ∂nφmp
q − φmp

rφnr
q + φnp

rφmr
q, (A.5)

where φ denotes a general connection that contains two contributions φmn
p =

Γmn
p + κmn

p where Γmn
p = Γnm

p denote the Christoffel symbols and κmn
p is the

contorsion which we define more precisely in appendix C.1. For the Ricci tensor
we use Rnp = Rnmp

m and thus in these conventions the Ricci scalar of a sphere is
negative.

• We define the ε-symbol to be ε123456 = +1. The indices are lowered with the
metric. It follows that in terms of ‘complex indices’ one has, as a result of the
SU (3) structure,

εαβγᾱβ̄γ̄ = −iεαβγ εᾱβ̄γ̄ . (A.6)

where similarly ε123 = ε1̄2̄3̄ = +1.

• For the gamma matrices we use the conventions from [18]. In particular the gamma
matrices on the internal space are chosen to be hermitian matrices satisfying

{Γm,Γn} = 2gmn . (A.7)

The chirality operator Γ7 is defined as

Γ7 = iΓ1 . . .Γ6 =
i

6!
εm1...m6Γ

m1 . . .Γm6 . (A.8)

Majorana spinors on the six-dimensional internal space can be defined if we adopt
the following conventions for the charge conjugation matrix C

CT = C , ΓT
m = −CΓmC−1 , (A.9)

while the Majorana condition on a spinor η reads

η† = ηTC . (A.10)

Symmetry properties of the gamma matrices and C with the above conventions
imply that for a commuting Majorana spinor η the following quantities vanish [18]

η†Γ(1)η = η†Γ(2)η = η†Γ(5)η = η†Γ(6)η = 0 , (A.11)

where by Γ(n) we have denoted the antisymmetric product of n gamma matrices

Γ(n) = Γm1...mn = Γ[m1 . . .Γmn] . (A.12)
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N = 2 (gauged) supergravity in four
dimensions

B.1 Generalities

As N = 2 (gauged) supergravities are the central theme of this work it is useful to put
together the most important formulae which we encounter throughout the thesis. For a
more detailed discussion of the subject we refer the reader to [94–100].

We have discussed the spectrum ofN = 2 theories in table 2.3 and we have argued that
in generic cases one deals with supergravity (gravity multiplet) coupled to nV vector and
nH hyper-multiplets. We do not discuss the more exotic cases of tensor or double tensor
multiplets as these can in general be dualized to hyper-multiplets.1 The vector multiplets
contain nV complex scalars ti, i = 1, . . . , nV while the hyper-multiplets contain 4nH real
scalars qu, u = 1, . . . , 4nH . N = 2 supersymmetry requires that the scalar manifold
factorizes

M = MV ⊗MH , (B.1)

where the component MV is a special Kähler manifold spanned by the scalars ti while
MH is a quaternionic manifold spanned by the scalars qu.

A special Kähler manifold is a Kähler manifold whose geometry obeys an additional
constraint [94]. This constraint states that the Kähler potential K is not an arbitrary
real function but determined in terms of a holomorphic prepotential F according to

K = − ln
(
iX̄I(t̄)FI(X)− iXI(t)F̄I(X̄)

)
, (B.2)

where XI , I = 0, . . . , nV are (nV +1) holomorphic functions of the ti. FI abbreviates the

derivative, i.e. FI ≡ ∂F(X)
∂XI and F(X) is a homogeneous function of XI of degree 2, i.e.

XIFI = 2F .

1The cases when these multiplets are massive and the dualization to hyper-multiplets is not possible
have not been discussed in the literature.
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The 4nH scalars qu, u = 1, . . . , 4nH in the hyper-multiplets are coordinates on a
quaternionic manifold [95]. This implies the existence of three almost complex structures
(Jx)w

v , x = 1, 2, 3 which satisfy the quaternionic algebra

JxJy = −δxy + iεxyzJz . (B.3)

Associated with the complex structures there is a triplet of fundamental (Kähler) forms

Kx
uv = huw(Jx)w

v , (B.4)

where huw is the quaternionic metric. The holonomy group of a quaternionic manifold
is Sp(2) × Sp(2nh) and Kx is identified with the field strength of the Sp(2) ∼ SU(2)
connection ωx, i.e.

Kx = dωx +
1

2
εxyzωy ∧ ωz . (B.5)

A quaternionic metric huv together with a holomorphic prepotential F specifies uniquely
the (ungauged) supergravity action. In particular its bosonic part has the form

S =

∫ [
− 1

2
R∗1−gīdt

i∧∗dt̄j−huvdq
u∧∗dqv +

1

2
ImNIJF

I ∧∗F J +
1

2
ReNIJF

I ∧F J
]
,

(B.6)
where gī = ∂i∂̄K, F

I = dAI (F 0 denotes the field strength of the graviphoton) and the
gauge coupling functions are given by

NIJ = F̄IJ + 2i
ImFIKImFJLX

KXL

ImFLKXKXL
. (B.7)

It is interesting to note that N = 2 supergravities are invariant under generalized
electric-magnetic duality transformations. This symmetry however is not a symmetry of
the of the action but only of the equations of motion and Bianchi identities. To see this
we introduce the magnetic dual field strengths

GI =
∂L
∂F I

= ReNIJF
J + ImNIJ ∗ F J , (B.8)

and thus the equations of motion become

0 =
∂L
∂AI

= dGI , (B.9)

while the Bianchi identities read
dF I = 0 . (B.10)

These equations are invariant under the generalized duality rotations2(
F I

GI

)
→

(
U Z
W V

) (
F I

GI

)
, (B.11)

2This is often stated in terms of the self-dual and anti-self-dual part of the field strength F±J and
the dual quantities G+

I ≡ NIJF+J , G−
I ≡ N̄IJF−J .
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where U , V , W and Z are constant, real, (nV + 1)× (nV + 1) matrices which obey

UTV −WTZ = V TU − ZTW = 1 ,

UTW = WTU , ZTV = V TZ ,
(B.12)

which means that the full matrix which appears in (B.11) is symplectic

O =

(
U Z

W V

)
, O ∈ Sp(2nV + 2) . (B.13)

(F I , GI) form a (2nV + 2) symplectic vector and the same is true for (XI ,FI). Clearly,
the Kähler potential (B.2) is invariant under this symplectic transformation. Finally, the
matrix N transforms according to

N → (VN +W ) (U + ZN )−1 . (B.14)

Let us now turn to gauged N = 2 supergravity [96]. One can gauge the isometries on
the scalar manifold M. Such isometries are generated by the Killing vectors ku

I (q), ki
I(t)

δqu = ΛIku
I (q) , δti = ΛIki

I(t) . (B.15)

ku
I (q), ki

I(t) satisfy the Killing equations which in N = 2 supergravity can be solved in
terms of four Killing prepotentials (PI , P

x
I ). The Killing vectors on MV are holomorphic

and obey
ki

I(t) = gij̄∂j̄PI , (B.16)

while the Killing vectors on MH are determined by a triplet of Killing prepotentials
P x

I (q) via
ku

I K
x
uv = −DvP

x
I ≡ −(∂vP

x
I + εxyzωy

vP
z
I ) . (B.17)

Gauging the isometries (B.15) requires the replacement of ordinary derivatives by covari-
ant derivatives in the action

∂µq
u → Dµq

u = ∂µq
u − ku

IA
I
µ , ∂µt

i → Dµt
i = ∂µt

i − ki
IA

I
µ . (B.18)

Furthermore the potential

VE = eK
[
XIX̄J(gı̄j k

ı̄
Ik

j
J + 4huv k

u
I k

v
J) + gīDiX

IDj̄X̄
JP x

I P
x
J − 3XIX̄JP x

I P
x
J

]
= eKXIX̄J(gı̄j k

ı̄
Ik

j
J + 4huv k

u
I k

v
J)−

[1

2
(ImN )−1IJ + 4eKXIX̄J

]
P x

I P
x
J , (B.19)

has to be added to the action in order to preserve supersymmetry. The bosonic part of
the action of gauged N = 2 supergravity is then given by

S =

∫
−1

2
R∗1−gīDt

i∧∗Dt̄j−huvDq
u∧∗Dqv+

1

2
ImNIJF

I∧∗F J+
1

2
ReNIJF

I∧F J−VE .

(B.20)
The symplectic invariance of the ungauged theory is generically broken since the action
now explicitly depends on the gauge potentials AI through the covariant derivatives
Dti, Dqu.
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B.2 N=2 supergravities from Calabi–Yau threefolds

We have seen in section 2.3 that Calabi–Yau compactifications of type II theories lead
to N = 2 supergravities in four dimensions. A crucial fact for this which has deep
connections with the structure of N = 2 theories is that the moduli space of Calabi–Yau
manifolds is a direct product of two special Kähler manifolds (2.30). In particular any
of these factors can appear as the scalar manifold for the vector multiplets in one of the
type II compactifications. In order to fill the gap left in the main text we present now a
couple of facts about the geometry of these moduli spaces.

B.2.1 The complexified Kähler cone

According to section 2.3.2, the Kähler class deformations together with the zero modes of
B2 are harmonic (1, 1)-forms on Y3. Hence both the Kähler form J and B2 components
on the internal manifold can be expanded in the basis of (1, 1) forms introduced in (2.24)

B2 + iJ = (bj + ivj)ωj ≡ tjωj , j = 1, . . . , h(1,1) . (B.21)

Let us denote by Kijk the triple intersection number on Y3

Kijk =

∫
Y3

ωi ∧ ωj ∧ ωk . (B.22)

Then it is useful to define the following quantities:

Kij =

∫
Y3

ωi ∧ ωj ∧ J = Kijkv
k

Ki =

∫
Y3

ωi ∧ J ∧ J = Kijkv
jvk ,

K =
1

6

∫
Y3

J ∧ J ∧ J =
1

6
Kijkv

ivjvk ,

(B.23)

Note that we have introduced the factor 1
6

in the last definition so that K is precisely the
volume of Y3. The metric on the complexified Kähler coneM1,1 is Kähler, i.e. gij = ∂i∂̄jK
and given by [30,35]

gij =
1

4K

∫
Y3

ωi ∧ ∗ωj = −1

4

(
Kij

K
− 1

4

KiKj

K2

)
(B.24)

= −∂i∂j

(
− ln 8K

)
= ∂i∂̄j

(
− ln 8K

)
.

Furthermore, the Kähler potentialK is determined in terms of a holomorphic prepotential
F via

e−K = 8K = i
(
X̄IFI −XIF̄I

)
, FI ≡ ∂IF , I = 0, . . . , h(1,1) , (B.25)
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where

F = − 1

3!

KijkX
iXjXk

X0
. (B.26)

The complexified Kähler class deformations ti are the so called special coordinates related
to the XI via XI = (1, ti). (XI , FI) transforms as a symplectic vector under (B.13) and
K is a symplectic invariant.

From a physical point of view the scalars ti are the bosonic partners of gauge fields
AI for the case of type IIA compactification. Thus, using the standard N = 2 formula
(B.7) it is possible to compute the couplings of the vector fields in the low energy action
from the geometry of the tis described above. Inserting the prepotential (B.26) in (B.7)
one obtains

ReN00 = −1

3
Kijkb

ibjbk , ImN00 = −K +

(
Kij −

1

4

KiKj

K

)
bibj ,

ReNi0 =
1

2
Kijkb

jbk , ImNi0 = −
(
Kij −

1

4

KiKj

K

)
bj , (B.27)

ReNij = −Kijkb
k , ImNij =

(
Kij −

1

4

KiKj

K

)
.

For the different calculations in this thesis it is useful to introduce the inverse matrices
gij and (ImN )−1IJ . Using (2.24) it is not difficult to see that

gij = 4K
∫

Y3

ω̃i ∧ ∗ω̃j , (B.28)

or equivalently

∗ωi = 4Kgijω̃
j , ∗ω̃i =

1

4K
gijωj . (B.29)

Furthermore we have

ωi ∧ ωj ∼ Kijkω̃
k , (B.30)

where the symbol ∼ denotes the fact that the quantities are in the same cohomology
class. Introducing Kij via

KijKjk = δi
k , (B.31)

one obtains

gij = −4K
(
Kij − vivj

2K

)
. (B.32)

Finally the inverse gauge coupling matrix has the form

(ImN )−1 =

 − 1
K − bi

K

− bi

K Kij − bibj

K − vivj

2K

 =

 − 1
K − bi

K

− bi

K −gij

4K −
bibj

K

 . (B.33)
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B.2.2 The special geometry of H3

Let us now turn our attention to the complex structure moduli space. We have seen
that the complex structure moduli are given by the variations of the metric which are
of (2, 0) + (0, 2) type. Using a well known theorem by Torelli [101] one can describe
this space in a simpler way by just looking at the holomorphic (3, 0) form Ω. Consider
the basis for H3(Y ) introduced in (2.25). Then the above cited theorem states that the
complex structure moduli space is given by the space of all possible periods

ZA =

∫
Y

Ω ∧ βA , GA =

∫
Y

Ω ∧ αA . (B.34)

It is not hard to have an intuitive picture of this result. Consider the expansion of Ω in
the basis (2.25)

Ω = ZAαA − GAβ
A . (B.35)

By deforming the complex structure one should also deform Ω as by definition is holomor-
phic and of type (3, 0) which are complex structure dependent. On the other hand, the
basis (αA, β

A) is real and thus the periods ZA and GA should change when the complex
structure is deformed.

It turns out [35] that GA are functions of ZA and determined in terms of a homoge-
neous function of degree two G(Z) as

GA =
∂G
∂ZA

≡ ∂AG . (B.36)

Furthermore, Ω is homogeneous of degree one in Z, i.e. Ω = ZA∂AΩ with

∂AΩ = αA − GABβ
B . (B.37)

The deformations of the complex structure za, a = 1, . . . , h(2,1) which reside inH2,1(Y3)
defined in (2.29) are related to the coordinates ZA via za = Za/Z0 or in other words one
can choose ZA = (1, za). The metric gab̄ on the space of complex structure deformations
M2,1 is Kähler

gab̄ = ∂a∂̄b̄K , (B.38)

with the Kähler potential K given by

K = − ln i

∫
Y3

Ω ∧ Ω̄ = − ln i
(
Z̄AGA − ZAḠA

)
. (B.39)

As we see K is determined in terms of the holomorphic prepotential G(Z) and hence
M2,1 is a special Kähler manifold.

As in the previous section let us comment on the symplectic structure of this geometry.
First of all it is easy to see that the basis (αA, β

A) (2.25) for H3(Y ) is defined only up to
a symplectic rotation. In order to keep Ω from (B.35) invariant (ZA,GA) must transform
as a symplectic vector. Note that in this way the Kähler potential (B.39) is explicitly
invariant under these transformations.
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Finally, let us discuss the action of the Hodge ∗ on the basis (2.25). ∗αA and ∗βB are
both three-forms again so that they can be expanded in terms of α and β according to

∗αA = AA
B αB +BAB β

B , ∗βA = CAB αB +DA
B β

B . (B.40)

Using (2.25) one derives

BAB =

∫
Y3

αA ∧ ∗αB =

∫
Y3

αB ∧ ∗αA = BBA ,

CAB = −
∫

Y3

βA ∧ ∗βB = −
∫

Y3

βB ∧ ∗βA = CBA , (B.41)

AA
B = −

∫
Y3

βB ∧ ∗αA = −
∫

Y3

αA ∧ ∗βB = −DB
A .

Furthermore, the matrices A, B, C can be determined in terms of the matrixM [97,102]
defined in (B.7) using the prepotential G from (B.36) and which will give the gauge
couplings in the case of the type IIB theory compactified on a Calabi–Yau manifold

A = (ReM) (ImM)−1 ,

B = − (ImM)− (ReM) (ImM)−1 (ReM) , (B.42)

C = (ImM)−1 .



Appendix C

G-structures

C.1 Complex and almost complex manifolds

In this section we assemble a few facts aboutG-structures as taken from the mathematical
literature where one also finds the proofs omitted here. (See, for example, [87,88,90,91,
103,104].) We concentrate on the example of manifolds with SU (3)-structure which are
the most significant ones for this thesis.

C.1.1 Almost Hermitian manifolds

Before discussing G-structures in general, let us recall the definition of an almost Hermi-
tian manifold. This allows us to introduce some useful concepts, and, as we subsequently
will see, provides us with a classic example of a G-structure.

A manifold of real dimension 2n is called almost complex if it admits a globally defined
tensor field Jm

n which obeys

Jm
pJp

n = −δmn . (C.1)

A metric gmn on such a manifold is called Hermitian if it satisfies

Jm
pJn

rgpr = gmn . (C.2)

An almost complex manifold endowed with a Hermitian metric is called an almost Hermi-
tian manifold. The relation (C.2) implies that Jmn = Jm

pgpn is a non-degenerate 2-form
which is called the fundamental form.

On any even-dimensional manifold one can locally introduce complex coordinates.
However, complex manifolds have to satisfy in addition that, first, the introduction of
complex coordinates on different patches is consistent, and second that the transition
functions between different patches are holomorphic functions of the complex coordinates.
The first condition corresponds to the existence of an almost complex structure. The
second condition is an integrability condition, implying that there are coordinations such

84
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that the almost complex structure takes the form

J =

(
i1n×n 0

0 −i1n×n

)
. (C.3)

The integrability condition is satisfied if and only if the Nijenhuis tensor Nmn
p vanishes.

It is defined as

Nmn
p = Jm

q (∂qJn
p − ∂nJq

p)− Jn
q (∂qJm

p − ∂mJq
p)

= Jm
q (∇qJn

p −∇nJq
p)− Jn

q (∇qJm
p −∇mJq

p) ,
(C.4)

where ∇ denotes the covariant derivative with respect to the Levi–Civita connection.

One can also consider an even stronger condition where ∇mJnp = 0. This implies
Nmn

p = 0 but in addition that dJ = 0 and means we have a Kähler manifold. In
particular, it implies that the holonomy of the Levi–Civita connection ∇ is U(n).

Even if there is no coordinate system where it can be put in the form (C.3), any almost
complex structure obeying (C.1) has eigenvalues ±i. Thus even for non-integrable almost
complex structures one can define the projection operators

(P±)m
n =

1

2
(δn

m ∓ iJm
n) , (C.5)

which project onto the two eigenspaces, and satisfy

P±P± = P± , P+P− = 0 . (C.6)

On an almost complex manifold one can define (p, q) projected components ωp,q of a real
(p+ q)-form ωp+q by using (C.5)

ωp,q
m1...mp+q

= (P+)m1

n1 . . . (P+)mp

np(P−)mp+1

np+1 . . . (P−)mp+q

np+qωp+q
n1...np+q

. (C.7)

Furthermore, a real (p+ q)-form is of the type (p, q) if it satisfies

ωm1...mpn1...nq = (P+)m1

r1 . . . (P+)mq

rp(P−)n1

s1 . . . (P−)nq

sqωr1...rps1...sq . (C.8)

In analogy with complex manifolds we denote the projections on the subspace of
eigenvalue +i with an unbarred index α and the projection on the subspace of eigenvalue
−i with a barred index ᾱ. For example the hermitian metric of an almost Hermitian
manifold is of type (1, 1) and has one barred and one unbarred index. Thus, raising
and lowering indices using this hermitian metric converts holomorphic indices into anti-
holomorphic ones and vice versa. Moreover the contraction of a holomorphic and an
anti-holomorphic index vanishes, i.e. given Vm which is of type (1, 0) and W n which is
of type (0, 1), the product VmW

m is zero. Similarly, on an almost hermitian manifold of
real dimension 2n forms of type (p, 0) vanish for p > n. Finally, derivatives of (p, q)-forms
pick up extra pieces compared to complex manifolds precisely because J is not constant.
One finds [104]

dω(p,q) = (dω)(p−1,q+2) + (dω)(p,q+1) + (dω)(p+1,q) + (dω)(p+2,q−1) . (C.9)
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C.1.2 G-structures and G-invariant tensors

An orthonormal frame on a d-dimensional Riemannian manifold M is given by a basis of
vectors ei, with i = 1, . . . , d, satisfying em

i e
n
j gmn = δij. The set of all orthonormal frames

is known as the frame bundle. In general, the structure group of the frame bundle is the
group of rotations O(d) (or SO(d) is M is orientable). The manifold has a G-structure
if the structure group of the frame bundle is not completely general but can be reduced
to G ⊂ O(d). For example, in the case of an almost Hermitian manifold of dimension
d = 2n, in turns out one can always introduce a complex frame and as a result the
structure group reduces to U(n).

An alternative and sometimes more convenient way to define G-structures is via G-
invariant tensors, or, if M is spin, G-invariant spinors. A non-vanishing, globally defined
tensor or spinor ξ is G-invariant if it is invariant under G ⊂ O(d) rotations of the
orthonormal frame. In the case of almost Hermitian structure, the two-form J is an
U(n)-invariant tensor. Since the invariant tensor ξ is globally defined, by considering the
set of frames for which ξ takes the same fixed form, one can see that the structure group
of the frame bundle must then reduce to G (or a subgroup of G). Thus the existence
of ξ implies we have a G-structure. Typically, the converse is also true. Recall that,
relative to an orthonormal frame, tensors of a given type form the vector space for a
given representation of O(d) (or Spin(d) for spinors). If the structure group of the frame
bundle is reduced to G ⊂ O(d), this representation can be decomposed into irreducible
representations of G. In the case of almost complex manifolds, this corresponds to the
decomposition under the P± projections (C.5). Typically there will be some tensor or
spinor that will have a component in this decomposition which is invariant under G.
The corresponding vector bundle of this component must be trivial, and thus will admit
a globally defined non-vanishing section ξ. In other words, we have a globally defined
non-vanishing G-invariant tensor or spinor.

To see this in more detail in the almost complex structure example, recall that we
had a globally defined fundamental two-form J . Let us specialize for definiteness to
a six-manifold, though the argument is quite general. Two-forms are in the adjoint
representation 15 of SO(6) which decomposes under U(3) as

15 = 1 + 8 + (3 + 3̄) . (C.10)

There is indeed a singlet in the decomposition and so given a U(3)-structure we necessarily
have a globally defined invariant two-form, which is precisely the fundamental two-form
J . Conversely, given a metric and a non-degenerate two-form J , we have an almost
Hermitian manifold and consequently an U(3)-structure.

In this paper we are interested in SU (3)-structure. In this case we find two invariant
tensors. First we have the fundamental form J as above. In addition, we find an invariant
complex three-form Ω. Three-forms are in the 20 representation of SO(6), giving two
singlets in the decomposition under SU (3),

15 = 1 + 8 + 3 + 3̄ ⇒ J ,

20 = 1 + 1 + 3 + 3̄ + 6 + 6̄ ⇒ Ω = Ω+ + iΩ− .
(C.11)
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In addition, since there is no singlet in the decomposition of a five-form, one finds that

J ∧ Ω = 0 . (C.12)

Similarly, a six-form is a singlet of SU (3), so we also must have that J ∧ J ∧ J is
proportional to Ω ∧ Ω̄. The usual convention is to set

J ∧ J ∧ J =
3i

4
Ω ∧ Ω̄ , (C.13)

Conversely, a non-degenerate J and Ω satisfying (C.12) and (C.13) implies that M has
SU (3)-structure.

We can similarly ask what happens to spinors for a structure group SU(3). In this
case we have the isomorphism Spin(6) ∼= SU (4) and the four-dimensional spinor repre-
sentation decomposes as

4 = 1 + 3 ⇒ η . (C.14)

We find one singlet in the decomposition, implying the existence of a globally defined
invariant spinor η. Again, the converse is also true. A metric and a globally defined
spinor η implies that M has SU (3)-structure.

C.1.3 Intrinsic torsion

One would like to have some classification of G-structures. In particular, one would like
a generalization of the notion of a Kähler manifold where the holonomy of the Levi–
Civita connection reduces to U(n). Such a classification exists in terms of the intrinsic
torsion. Let us start by recalling the definition of torsion and contorsion on a Riemannian
manifold (M, g).

Given any metric compatible connection ∇′ on (M, g), i.e. one satisfying ∇′
mgnp = 0,

one can define the Riemann curvature tensor and the torsion tensor as follows

[∇′
m,∇′

n]Vp = −Rmnp
qVq − 2Tmn

r∇′
rVp , (C.15)

where V is an arbitrary vector field. The Levi-Civita connection is the unique torsionless
connection compatible with the metric and is given by the usual expression in terms
of Christoffel symbols Γmn

p = Γnm
p. Let us denote by ∇ the covariant derivative with

respect to the Levi-Civita connection while a connection with torsion is denoted by ∇(T ).
Any metric compatible connection can be written in terms of the Levi-Civita connection

∇(T ) = ∇+ κ , (C.16)

where κmn
p is the contorsion tensor. Metric compatibility implies

κmnp = −κmpn , where κmnp = κmn
rgrp . (C.17)

Inserting (C.17) into (C.15) one finds a one-to-one correspondence between the torsion
and the contorsion

Tmn
p =

1

2
(κmn

p − κnm
p) ≡ κ[mn]

p ,

κmnp = Tmnp + Tpmn + Tpnm .

(C.18)
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These relations tell us that given a torsion tensor T there exist a unique connection ∇(T )

whose torsion is precisely T .

Now suppose M has a G-structure. In general the Levi-Civita connection does not
preserve the G-invariant tensors (or spinor) ξ. In other words, ∇ξ 6= 0. However, one
can show [88], that there always exist some other connection ∇(T ) which is compatible
with the G structure so that

∇(T )ξ = 0 . (C.19)

Thus for instance, on an almost Hermitian manifold one can always find ∇(T ) such that
∇(T )J = 0. On a manifold with SU (3)-structure, it means we can always find ∇(T ) such
that both ∇(T )J = 0 and ∇(T )Ω = 0. Since the existence of SU (3)-structure is also
equivalent to the existence of an invariant spinor η, this is equivalent to the condition
∇(T )η = 0.

Let κ be the contorsion tensor corresponding to∇(T ). From the symmetries (C.17), we
see that κ is an element of Λ1⊗Λ2 where Λn is the space of n-forms. Alternatively, since
Λ2 ∼= so(d), it is more natural to think of κmn

p as one-form with values in the Lie-algebra
so(d) that is Λ1 ⊗ so(d). Given the existence of a G-structure, we can decompose so(d)
into a part in the Lie algebra g of G ⊂ SO(d) and an orthogonal piece g⊥ = so(d)/g.
The contorsion κ splits according into

κ = κ0 + κg , (C.20)

where κ0 is the part in Λ1 ⊗ g⊥. Since an invariant tensor (or spinor) ξ is fixed under G
rotations, the action of g on ξ vanishes and we have, by definition,

∇(T )ξ =
(
∇+ κ0 + κg

)
ξ =

(
∇+ κ0

)
ξ = 0 . (C.21)

Thus, any two G-compatible connections must differ by a piece proportional to κg and
they have a common term κ0 in Λ1⊗g⊥ called the “intrinsic contorsion”. Recall that there
is an isomorphism (C.18) between κ and T . It is more conventional in the mathematics
literature to define the corresponding torsion

T 0
mn

p = κ0
[mn]

p ∈ Λ1 ⊗ g⊥ , (C.22)

known as the intrinsic torsion.

From the relation (C.21) it is clear that the intrinsic contorsion, or equivalently tor-
sion, is independent of the choice of G-compatible connection. Basically it is a measure
of the degree to which ∇ξ fails to vanish and as such is a measure solely of the G-
structure itself. Furthermore, one can decompose κ0 into irreducible G representations.
This provides a classification of G-structures in terms of which representations appear in
the decomposition. In particular, in the special case where κ0 vanishes so that ∇ξ = 0,
one says that the structure is “torsion-free”. For an almost Hermitian structure this is
equivalent to requiring that the manifold is complex and Kähler. In particular, it implies
that the holonomy of the Levi–Civita connection is contained in G.

Let us consider the decomposition of T 0 in the case of SU(3)-structure. The relevant
representations are

Λ1 ∼ 3⊕ 3̄ , g ∼ 8 , g⊥ ∼ 1⊕ 3⊕ 3̄ . (C.23)
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Thus the intrinsic torsion, which is an element of Λ1 ⊗ su(3)⊥, can be decomposed into
the following SU(3) representations

Λ1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄)′ .
(C.24)

The terms in parentheses on the second line correspond precisely to the five classes
W1, . . . ,W5 presented in table 5.1. We label the component of T 0 in each class by
T1, . . . , T5.

In the case of SU (3)-structure, each component Ti can be related to a particular
component in the SU (3) decomposition of dJ and dΩ. From (C.21), we have

dJmnp = 6T 0
[mn

rJr|p] ,

dΩmnpq = 12T 0
[mn

rΩr|pq] .
(C.25)

Since J and Ω are SU (3) singlets, dJ and dΩ are both elements of Λ1 ⊗ su(3)⊥. Put
another way, the contractions with J and Ω in (C.25) simply project onto different SU (3)
representations of T 0. We can see which representations appear simply by decomposing
the real three-form dJ and complex four-form dΩ under SU (3). We have,

dJ =
[
(dJ)3,0 + (dJ)0,3

]
+

[
(dJ)2,1

0 + (dJ)1,2
0

]
+

[
(dJ)1,0 + (dJ)0,1

]
,

20 = (1⊕ 1)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄) ,
(C.26)

and

dΩ = (dΩ)3,1 + (dΩ)2,2
0 + (dΩ)0,0 ,

24 = (3⊕ 3̄)′ ⊕ (8⊕ 8)⊕ (1⊕ 1) .
(C.27)

The superscripts in the decomposition of dJ and dΩ refer to the (p, q)-type of the form.
The 0 subscript refers to the irreducible SU (3) representation where the trace part,
proportional to Jn has been removed. Thus in particular, the traceless parts (dJ)2,1

0 and
(dΩ)2,2

0 satisfy J ∧ (dJ)2,1
0 = 0 and J ∧ (dΩ)2,2

0 = 0 respectively. The trace parts on the
other hand, have the form (dJ)1,0 = α∧J and (dΩ)0,0 = βJ ∧J , with α ∼ ∗(J ∧dJ) and
β ∼ ∗(J ∧ dΩ) respectively. Note that a generic complex four-form has 30 components.
However, since Ω is a (3, 0)-form, from (C.9) we see that dΩ has no (1, 3) part, and so
only has 24 components. Comparing (C.26) and (C.27) with (C.24) we see that

dJ ∈ W1 ⊕W3 ⊕W4 , dΩ ∈ W1 ⊕W2 ⊕W5 , (C.28)

and as advertised, dJ and dΩ together include all the components Ti. Note that the
singlet component T1 can be expressed either in terms of (dJ)0,3, corresponding to Ω∧dJ
or in terms of (dΩ)0,0 corresponding to J∧dΩ. This is simply a result of the relation (C.12)
which implies that Ω ∧ dJ = J ∧ dΩ.
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C.2 The Ricci scalar of half-flat manifolds

The simplest way to derive the Ricci scalar for the manifold considered in chapter 5 is
by using the integrability condition one can derive from the Killing spinor equation (5.2)

R(T )
mnpqΓ

pqη = 0, (C.29)

where the Riemann tensor of the connection with torsion is given by (A.5)

R(T )
mnpq = R(Γ)mnpq +∇mκ

0
npq −∇nκ

0
mpq − κ0

mp
rκ0

nrq + κ0
np

rκ0
mrq . (C.30)

Here R(Γ)mnpq represents the usual Riemann tensor for the Levi-Civita connection and
the covariant derivatives are again with respect to the Levi-Civita connection. For def-
initeness we choose the solution of the Killing spinor equation (5.2) to be a Majorana
spinor.1 Multiplying (C.29) by Γn and summing over n one obtains

R(T )
mnpqΓ

npqη − 2R(T )
mnΓnη = 0 . (C.31)

Contracting from the left with η†Γm and using the conventions for the Majorana spinors
(A.11) one derives

2R(T ) = R(T )
mnpqη

†Γmnpqη . (C.32)

where R(T ) represents the Ricci scalar which can be defined from the Riemann tensor
(C.30). Expressing R

(T )
mnpq in terms of R(Γ)mnpq from (C.30), using the Bianchi identity

R(Γ)m[npq] = 0 and the fact that the contorsion is traceless κ0
mn

m = κ0m
mn = 0 which

holds for half flat manifolds one can derive the formula for the Ricci scalar of the Levi-
Civita connection

R = −κ0
mnpκ

0npm − 1

2
εmnpqrs(∇mκ

0
npq − κ0

mp
lκ0

nlq)Jrs . (C.33)

Clearly in order to evaluate this expression we need the components of the intrinsic
contorsion for the case we are dealing with. As we have presented in chapter 5 the
intrinsic torsion (and thus also the intrinsic contorsion) can be uniquely determined in
terms of the exterior derivatives of the fundamental form dJ and of the (3, 0) form dΩ.
By definition for half-flat manifolds the imaginary part of T−1⊕2, and the components T4

and T5 vanish and so we only have to determine T+
1⊕2 and T3.

From table 5.1 one sees that T1⊕2 is in the same representation as a complex (2, 2)
form F . Consequently we write

(T1⊕2)mn
p = FmnrsΩ

rsp + F̄mnrsΩ̄
rsp . (C.34)

The half flatness condition T−1⊕2 = 0 just imposes that F is real (F = F̄ ) so that

(T1⊕2)mn
p = (T+

1⊕2)mn
p = 2F (2,2)

mnrs Ω+rsp , (C.35)

1The results are independent of the choice of the spinor, but the derivations may be more involved.
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where we have used (5.4). Explicitly, from the relations (C.25) one has that F is related
to dΩ by

F (2,2)
mnrs ≡

1

4||Ω||2
(dΩ)2,2

mnrs =
1

4||Ω||2
(dΩ+)2,2

mnrs . (C.36)

Similarly we see from table 5.1 that the component T3 of the torsion is given by the
traceless (2, 1) + (1, 2) part of dJ . Expanding dJ in forms of definite type we obtain

(dJ) = (dJ)(3,0)+(0,3) + (dJ)(2,1)+(1,2) . (C.37)

The (3, 0) and (0, 3) parts are SU (3) singlets thus proportional to Ω and Ω̄ respectively
and from table 5.1 one sees that they can be completely determined in terms of the T1

part of the torsion. Contracting (C.37) first with Ω and then with Ω̄ one obtains

(dJ)(3,0)+(0,3) = 4FΩ− , (C.38)

where by F we have denoted the trace of the four form

F ≡ Fαβ
αβ . (C.39)

Using (C.38) equation (C.37) becomes

(dJ)mnp = 4F (Ω−)mnp + 6(T3)[mn
rJ|r|p] . (C.40)

Equations (C.35), (C.36) and (C.40) give us the torsion components for a general half
flat manifold. To obtain now the torsion components in terms of the fluxes we should
replace dΩ from (5.13). Using [105]

(ω̃i)αβ
αβ =

2vi

K
, (C.41)

one obtains for the trace of the four-form (C.35)

F ≡ Fαβ
αβ =

eiv
i

2K||Ω||2
. (C.42)

Having derived the expressions for the non-vanishing torsion components we can now
attempt to compute the Ricci scalar of half-flat manifolds using (C.33). In order to
simplify the formulas we evaluate (C.33) term by term. The strategy will be to express
first the contorsion κ0 in terms of the torsion T 0 (C.18) and then go to complex indices
splitting the torsion in its component parts2 T1⊕2 and T3 which are of definite type with
respect to the almost complex structure J .

The first term can be written as

A ≡ −κ0
mnpκ

0npm
= −(T 0

mnp + T 0
pmn + T 0

pnm)(T 0)npm = T 0
mnp(T

0)mnp − 2T 0
mnp(T

0)npm.
(C.43)

2Note that for the components of the intrinsic torsion T 0 we use only the notation Ti and drop the
superscript 0.
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Using the fact that the first two indices of the torsion T 0 are of the same type one obtains

A = (T1⊕2)αβγ(T1⊕2)
αβγ − 2(T1⊕2)αβγ(T1⊕2)

βγα + (T3)αβγ̄(T3)
αβγ̄ + c.c. , (C.44)

where c.c. denotes complex conjugation.

The second term can be computed if one takes into account that the four-dimensional
effective action appears after one integrates the ten-dimensional action over the internal
space, in this case Ŷ . Thus the second term in (C.33) can be integrated by parts to give3

B ≡ −1

2
εmnpqrs(∇mκ

0
npq)Jrs ∼

1

2
εmnpqrsκ0

npq∇mJrs. (C.45)

Using (5.8) and (C.18) we obtain after going to complex indices

B = −εmnpqrs(T 0)mnp(T
0)qr

tJts (C.46)

= −εαβγᾱβ̄γ̄(T1⊕2)αβγ(T1⊕2)ᾱβ̄
δJδγ̄ − εαβγ̄ᾱβ̄γ(T3)αβγ̄(T3)ᾱβ̄

δ̄Jδ̄γ + c.c. .

The six-dimensional ε symbol splits as

εαβγᾱβ̄γ̄ = −iεαβγεᾱβ̄γ̄ , (C.47)

and after some algebra involving the three-dimensional ε symbol one finds

B = −2(T1⊕2)αβγ(T1⊕2)
αβγ − 4(T1⊕2)αβγ(T1⊕2)

βγα − 2(T3)αβγ̄(T3)
αβγ̄ + c.c. . (C.48)

In the same way one obtains for the last term

C ≡ 1

2
εmnpqrsκ0

mp
tκ0

ntqJrs = 2(T1⊕2)αβγ(T1⊕2)
αβγ + 2(T3)αβγ̄(T3)

αβγ̄ + c.c. . (C.49)

Collecting the results from (C.44), (C.48) and (C.49) the formula for the Ricci scalar
(C.33) becomes

R = (T1⊕2)αβγ(T1⊕2)
αβγ − 6(T1⊕2)αβγ(T1⊕2)

βγα + (T3)αβγ̄(T3)
αβγ̄ + c.c. . (C.50)

The first two terms in the above expression can be straightforwardly computed using
(C.35), (5.13) and (C.41). After a little algebra we find

(T1⊕2)αβγ(T1⊕2)
αβγ =

eiej

8||Ω||2
(ω̃i)αβᾱβ̄(ω̃j)αβᾱβ̄ , (C.51)

(T1⊕2)αβγ(T1⊕2)
βγα = − eiej

8||Ω||2
(ω̃i)αβᾱβ̄(ω̃j)αβᾱβ̄ +

eiej

4||Ω||2
(∗ω̃i)αβ̄(∗ω̃j)αβ̄ +

(eiv
i)2

4||Ω||2K2
.

3Strictly speaking in 10 dimensions the Ricci scalar comes multiplied with a dilaton factor (2.2).
However in all what we are doing we consider that the dilaton is constant over the internal space so
it still make sense to speak about integration by parts without introducing additional factors with
derivatives of the dilaton.



C.2. The Ricci scalar of half-flat manifolds 93

Integrating (C.51) over Ŷ we obtain∫
Ŷ

(T1⊕2)αβγ(T1⊕2)
αβγ =

eiejg
ij

8||Ω||2K
, (C.52)∫

Ŷ

(T1⊕2)αβγ(T1⊕2)
βγα = − eiejg

ij

16||Ω||2K
+

(eiv
i)2

4||Ω||2K
.

Finally, we have to compute the third term in (C.50). For this we take the square
of (C.40) using the fact that the terms on the RHS do not mix as they carry indices of
different types. Inserting (C.42) and dJ of (5.22) we obtain

(eiv
i)2

∫
Ŷ

β0 ∧ ∗β0 = 2i

(
eiv

i

||Ω||2K

)2 ∫
Ŷ

Ω ∧ Ω̄ + 2

∫
Ŷ

(T3)mnp(T3)
mnp . (C.53)

The integral which appears on the LHS is given by∫
β0 ∧ ∗β0 = −

[
(ImM)−1

]00
=

8

||Ω||2K
, (C.54)

where the first equation follows from (B.40) and (B.42) while the second equation is less
obvious. The simplest way to see this is by using a mirror symmetry argument. We
know that under mirror symmetry the gauge couplings M and N are mapped into one
another. This also means that (ImM)−1 is mapped into (ImN )−1 and this matrix is
given in (B.33) for a Calabi–Yau space. From here one sees that the element [(ImN )−1]

00

is just the inverse volume of the mirror Calabi–Yau space. Using again mirror symmetry
and the fact that the Kähler potential of the Kähler moduli (B.24) is mapped into the
Kähler potential of the complex structure moduli (B.39) we end up with the RHS of the
above equation.

Now we can write (C.53) as∫
Ŷ

(T3)mnp(T3)
mnp = 3

(eiv
i)2

||Ω||2K
, (C.55)

or in complex indices ∫
Ŷ

(T3)αβγ̄(T3)
αβγ̄ =

3

2

(eiv
i)2

||Ω||2K
. (C.56)

Inserting (C.52) and (C.56) into (C.50) and taking into account that all the terms in
(C.52) and (C.56) are explicitly real such that the term ‘c.c.’ in (C.50) just introduces
one more factor of 2 we obtain the final form of the Ricci scalar

R = −1

8
eiejg

ij
[
(ImM)−1

]00
, (C.57)

where we have used again (C.54).



Appendix D

D.1 Kaluza–Klein reductions

As KK reductions play an important role in this thesis let us outline few of its most
important features in a simple example, namely compactification on a circle. At the end
we sketch the steps which are needed in order to generalize this to arbitrary internal
manifolds. Thus this appendix is not intended to be an extensive review but rather to
provide the main tools for computing low energy effective actions via the KK reduction.
For a detailed discussion we refer the reader to the existing literature (see for example
[106] and references therein).

We start from the Einstein-Hilbert action in five dimensions

S = −
∫
d5x

√
−GR̂ , (D.1)

and we want to see what is the interpretation from a four-dimensional point of view.
This theory is clearly invariant under translations along any of the five coordinates and
thus we can assume that one of the space directions, which we denote by y, is wrapped
along a circle of radius ρ. The equations of motion in five dimensions read R̂MN = 0 and
the simplest solution which is consistent with the above Ansatz is the Minkowski metric

GMN =

(
ηµν 0

0 1

)
. (D.2)

This is a trivial example of the so called ‘spontaneous compactification’ where the higher-
dimensional theory admits a solution which is a direct product of two spaces which do not
talk to each other. Note that this is a necessary condition for a consistent compactifica-
tion. We are now interested to study the dynamics of the theory in this vacuum. In other
words we consider fluctuations about this vacuum and impose the five-dimensional equa-
tions of motion. For this we choose the following parameterization of the five-dimensional
metric

GMN = φ−1/3

(
gµν + φAµAν φAµ

φAν φ

)
, (D.3)

where gµν is the four-dimensional metric, Aµ ≡ Gµ5, is a vector field from the four
dimensional point of view and φ ≡ g55 is a scalar field. These fields should be regarded
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as small variations around the background (D.2) or in other words their vacuum vacuum
expectation values are given by

< gµν > = ηµν , < Aµ > = 0 , < φ > = 1 . (D.4)

For the simple Ansatz (D.2) it is not hard to see that the five dimensional equations of
motion impose that the components of the metric (D.3) have to be eigenvectors of the
Laplace operator in five dimensions. Furthermore in order to extract information about
the four-dimensional physics we expand the fields in (D.3) as

gµν =
∞∑

n=−∞

g(n)
µν e

2πniy
ρ , Aµ =

∞∑
n=−∞

A(n)
µ e

2πniy
ρ , φ =

∞∑
n=−∞

φ(n)en 2πiy
ρ . (D.5)

The Laplace operator splits into a space-time and an internal part and so using the
expansion (D.5) one generically obtaines

0 = ∂M∂
Mφ = ∂µ∂

µφ+ ∂y∂yφ =
∞∑

n=−∞

[
∂µ∂

µ −
(

2πn

ρ

)2
]
φ(n)en 2πiy

ρ . (D.6)

Thus from a four-dimensional point of view the fields in (D.5) have masses of order
m2

n ∼ n2

ρ2 . If the size of the compactification circle is small the masses of the fields
coming from the compactification are large and in a low energy approximation they can
be neglected. Truncating out the massive modes effectively means to consider that the
dependence of the five dimensional fields on the fifth coordinate is trivial. Inserting this
back into the action and performing the integral over the fifth dimension one finds

S =

∫
d4x

√
−g

[
−R− 1

4
φFµνF

µν − 1

6φ2
∂µφ ∂

µφ

]
, (D.7)

where in order to simplify the notation we have dropped the superscript (0) on the fields.
We have also rescaled the four dimensional metric and the field φ to absorb the volume
factor which appears after performing the integral over y and we have furthermore used
the notation Fµν = ∂µAν − ∂νAµ. It is interesting to note that the general coordinate
invariance in the fifth direction has transformed into a four dimensional Abelian gauge
transformation Aµ → Aµ + ∂µλ.

If in five dimensions one also has matter fields the procedure is very similar to what
we have just described. The generic equation of motion for the matter fields is

∂M∂
MΦ = 0 , (D.8)

which under the assumption (D.2) again splits into a four dimensional part and an internal
one. For a low energy approximation we are again interested in the massless modes and
so we expand all the matter fields in harmonic functions on the circle and only keep the
fields which correspond to zero eigenvalue.

This procedure can be easily generalized to arbitrary theories in arbitrary dimensions
and for any number of compact dimensions. The main steps are exactly as in the above
example
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1. write the spontaneous compactification Ansatz

2. expand fields around this solution

3. identify the massless modes in lower dimensions

4. truncate the spectrum to only the massless modes and perform the integral over
the internals space

Let us briefly sketch what are the differences one may encounter in such a gener-
alization. First of all for a general theory it is not clear that it exhibits spontaneous
compactification. If this is true and the internal manifold is flat (ie is a torus) then it is
straightforward to generalize the above example. The only difference is that now there
will be harmonic functions for each internal direction. If the manifold on the other hand
is curved then one has to be more careful. For the matter fields the situation is again
similar in that the massless modes in lower dimensions correspond to harmonic forms on
the internal manifold.1 For the fields which appear due to fluctuations of the metric in
the internal directions the analysis is more complicated and a general prescription does
not exist. For Ricci flat manifolds there is nevertheless a systematic way to extract infor-
mation about the zero modes and in section 2.3.2 we have already presented an explicit
example when the internal manifold is a Calabi–Yau space.

D.2 Poincaré dualities

For an arbitrary p-form in d dimensions one always has the choice to describe the action
in terms of a Poincaré dual form. The nature of the dual form differs in the massless
and massive case. A massless p-form in d dimensions describes

(
d−2

p

)
physical degrees of

freedom while a massive p-form in d dimensions contains
(

d−1
p

)
degrees of freedom. The

difference can be easily understood from a generalized Higgs mechanism where a p-form
‘eats’ a massless p− 1-form and thus the number of degrees of freedom change by

(
d−2
p−1

)
.

Therefore a massless p-form in d dimensions is dual to a (d− p− 2)-form while a massive
p-form is dual to a (d− p− 1)-form. A massless (d− 1)-form is special in that it is dual
to a constant.

In d = 4 this implies that a massless three-form is dual to a constant, a massless
two-form is dual to a scalar while a massive 2-from is dual to a vector (a 1-form). As
these cases in four dimensions appear repeatedly after compactifying the ten dimensional
string/supergravity theories it is useful how to obtain the dynamics of the dual fields and
so we will discuss these cases in turn.

1Note that by harmonic form we mean a form which satisfies ∆ω = d†dω + dd†ω = 0 and not forms
which are eigenvectors of the above Laplace operator with non-zero eigenvalues.
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D.2.1 Dualization of a massless B2

Let us first consider the dualization of a massless two-form B2 with field strength H3 =
dB2 to a scalar a. We start from the generic action

SH3 = −
∫ [g

4
H3 ∧ ∗H3 −

1

2
H3 ∧ J1

]
, (D.9)

where g is an arbitrary function of the scalars while J1 is a generic 1-form depending
on the scalars and possibly some gauge field A1. The dualization can be carried out by
introducing a scalar field a as a Lagrange multiplier and adding the term H3∧da to SH3 .
Treating H3 as an independent three-form (not being dB2) the equation of motion for a
implies H3 = dB2 while the equation of motion for H3 reads ∗H3 = 1

g
(da+ J1). Inserted

back into the action (D.9) one obtains the dual action

Sa = −
∫

1

4g
(da+ J1) ∧ ∗(da+ J1) . (D.10)

There is an another way of treating the dualizations which turns out to be useful in
understanding the dualization of a three-form in four dimensions. Consider the equation
of motion for B2

d(g ∗H3 − J1) = 0, (D.11)

which can be derived from (D.9). It is solved by

g∗H3 − J1 = da , (D.12)

with a being some arbitrary scalar field. The equation of motion for this field is dictated
by the Bianchi identity of H3

0 = dH3 = d

[
1

g
∗(da+ J1)

]
, (D.13)

which in turn can be obtained from the action (D.10). This implies that the two ways
described for the dualization of B2 are equivalent.

D.2.2 Dualization of the three-form

Next we consider the dualization of a three-form in 4 dimensions. We start from a generic
action for a three-form C3 possibly coupled to two-forms, 1-forms and scalars

SC3 = −
∫ [g

4
(dC3 − J4) ∧ ∗(dC3 − J4) +

h

2
dC3

]
, (D.14)

where g, h denote two arbitrary scalar functions and J4 is an 4-form which can depend
on the two-forms, 1-forms and scalars present in the spectrum.

For the field strength of a three-form in 4 dimensions there is no proper Bianchi
identity since no 5-forms exist. That is why the second way of dualizing forms presented
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in the previous section, by exchanging the equation of motion with the Bianchi identity,
can not work in this case. The only consistent way to proceed is to add a Lagrange
multiplier to the action (D.14) [107]

SC3 = −
∫ [g

4
(dC3 − J4) ∧ ∗(dC3 − J4) +

h

2
dC3 +

e0
2
dC3

]
, (D.15)

where e0 is a constant. The equation of motion for dC3 imply

g

2

∗
(dC3 − J4) = −h+ e0

2
. (D.16)

Inserted back into the action (D.14) and using ∗∗dC3 = −dC3 one obtains

Se0 = −
∫ [

1

4g
(h+ e0)

2 ∗1 +
1

2
(h+ e0)J4

]
. (D.17)

As we see a potential for the scalar fields is induced and e0 play the role of a cosmological
constant.

D.2.3 Dualization of a massive two-form

Finally, let us dicuss the dualization of the a massive two-form B2 [84–86]. We start from
a generic action

SB2 = −
∫ [

gH3 ∧ ∗H3 +M2B2 ∧ ∗B2 +M2
TB2 ∧B2 +B2 ∧ J2

]
, (D.18)

where g,M,MT can be field dependent couplings and J2 is a two-form which can depend
on the gauge potential A1 and/or some scalar fields. (J2 does not depend on B2.) We can
treat B2 and H3 as independent fields and ensure H3 = dB2 by the equations of motion.
This is achieved in the action

S ′B2
= −

∫ [
−gH3 ∧ ∗H3 + 2gH3 ∧ ∗dB2 +M2B2 ∧ ∗B2 +M2

TB2 ∧B2 +B2 ∧ J2

]
,

(D.19)
which indeed has H3 = dB2 as the equation of motion for H3. So by inserting H3 = dB2

into (D.19) we obtain (D.18). On the other hand one can eliminate B2 through its
equation of motion and obtain an action expressed only in terms of H3. The equation of
motion for B2 from (D.19) is

2M2 ∗B2 + 2M2
TB2 + J2 − 2d ∗(gH3) = 0 , (D.20)

which is solved by

∗B2 =
1

M4 +M4
T

[
M2d ∗(gH3) +M2 ∗

T d ∗(gH3)−
M2

2
J2 −

M2
T

2

∗
J2

]
or

B2 =
1

M4 +M4
T

[
M2

Td
∗(gH3)−M2 ∗d ∗(gH3) +

M2

2

∗
J2 −

M2
T

2
J2

]
. (D.21)
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Inserted back into the action (D.19) results in

S
′′

B2
=

∫ [
gH3 ∧ ∗H3 −

M2

M4 +M4
T

(
d ∗(gH3)−

1

2
J2

)
∧ ∗

(
d ∗(gH3)−

1

2
J2

)
+

M2
T

M4 +M4
T

(
d ∗(gH3)−

1

2
J2

)
∧

(
d ∗(gH3)−

1

2
J2

) ]
. (D.22)

We can now replace H3 by its Poincaré dual one-form AH = g ∗H3 and the dual action
for the massive field AH is

SAH = −
∫ [

1

g
AH ∧ ∗AH +

M2

M4 +M4
T

(
dAH − 1

2
J2

)
∧ ∗

(
dAH − 1

2
J2

)

− M2
T

M4 +M4
T

(
dAH − 1

2
J2

)
∧

(
dAH − 1

2
J2

) ]
. (D.23)

As promised this is the action for a massive one-form AH .



Bibliography

[1] Particle Data Group Collaboration, K. Hagiwara et al., “Review of particle
physics,” Phys. Rev. D66 (2002) 010001.

[2] R. M. Wald, “General relativity,”. Chicago, Usa: Univ. Pr. ( 1984) 491p.

[3] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61 (1989)
1–23.

[4] R. H. Brandenberger and C. Vafa, “Superstrings in the early universe,” Nucl. Phys.
B316 (1989) 391.

[5] J. Polchinski, “Lectures on D-branes,” hep-th/9611050.

[6] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension,”
Phys. Rev. Lett. 83 (1999) 3370, hep-ph/9905221.

[7] L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett.
83 (1999) 4690, hep-th/9906064.

[8] M. Berkooz, M. R. Douglas, and R. G. Leigh, “Branes intersecting at angles,” Nucl.
Phys. B480 (1996) 265–278, hep-th/9606139.

[9] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configura-
tions for superstrings,” Nucl. Phys. B258 (1985) 46.

[10] C. Vafa, “Lectures on strings and dualities,” hep-th/9702201.

[11] S. Hosono, A. Klemm, and S. Theisen, “Lectures on mirror symmetry,”
hep-th/9403096. In *Helsinki 1993, Proceedings, Integrable models and strings*
235-280.

[12] “Essays on mirror manifolds,”. Yau, S.T. (ed.) International Press 1992.

[13] A. Strominger, S.-T. Yau, and E. Zaslow, “Mirror symmetry is T-duality,” Nucl.
Phys. B479 (1996) 243, hep-th/9606040.

[14] J. Louis and A. Micu, “Type II theories compactified on Calabi–Yau three-
folds in the presence of background fluxes,” Nucl. Phys. B635 (2002) 395–431,
hep-th/0202168.

100



Bibliography 101

[15] J. Louis and A. Micu, “Heterotic string theory with background fluxes,” Nucl.
Phys. B626 (2002) 26–52, hep-th/0110187.

[16] S. Gurrieri, J. Louis, A. Micu, and D. Waldram, “Mirror symmetry in generalized
Calabi-Yau compactifications,” Nucl. Phys. B654 (2003) 61, hep-th/0211102.

[17] S. Gurrieri and A. Micu, “Type IIB theory on half-flat manifolds,”
hep-th/0212278.

[18] A. Van Proeyen, “Tools for supersymmetry,” hep-th/9910030.

[19] Y. Tanii, “Introduction to supergravities in diverse dimensions,” hep-th/9802138.

[20] B. de Wit and J. Louis, “Supersymmetry and dualities in various dimensions,”
hep-th/9801132. In *Cargese 1997, Strings, branes and dualities* 33-101.

[21] J. Polchinski, “String theory. 2 volumes,”. Cambridge, UK: Univ. Pr. (1998) 531 p.

[22] M. B. Green, J. H. Schwarz, and E. Witten, “Superstring theory. 2 volumes.,”.
Cambridge, UK: Univ. Pr. (1987) 596 P. (Cambridge Monographs On Mathematical
Physics).

[23] F. Giani and M. Pernici, “N=2 supergravity in ten-dimensions,” Phys. Rev. D30
(1984) 325–333.

[24] L. J. Romans, “Massive N=2a supergravity in ten-dimensions,” Phys. Lett. B169
(1986) 374.

[25] N. Marcus and J. H. Schwarz, “Field theories that have no manifestly Lorentz
invariant formulation,” Phys. Lett. B115 (1982) 111.

[26] G. Dall’Agata, K. Lechner, and M. Tonin, “D = 10, N = IIB supergravity: Lorentz-
invariant actions and duality,” JHEP 07 (1998) 017, hep-th/9806140.

[27] E. Bergshoeff, H. J. Boonstra, and T. Ortin, “S duality and dyonic p-brane solutions
in type II string theory,” Phys. Rev. D53 (1996) 7206, hep-th/9508091.

[28] P. Candelas, “Compactification and supersymmetry of chiral N=2, D=10 super-
gravity,” Nucl.Phys. B256 (1985) 385.

[29] B. de Wit, D. J. Smit, and N. D. Hari Dass, “Residual supersymmetry of compact-
ified d = 10 supergravity,” Nucl. Phys. B283 (1987) 165.

[30] M. Bodner, A. C. Cadavid, and S. Ferrara, “(2,2) vacuum configurations for type
IIA superstrings: N=2 supergravity Lagrangians and algebraic geometry,” Class.
Quant. Grav. 8 (1991) 789.

[31] M. Bodner and A. C. Cadavid, “Dimensional reduction of type IIB supergravity
and exceptional quaternionic manifolds,” Class. Quant. Grav. 7 (1990) 829.



102 Bibliography
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